ag视讯打不开-AG全讯网puma

師資

EN       返回上一級       師資搜索
孔芳
助理教授

研究領域

在線學習,強化學習,機器學習


教育經歷

2020.9-2024.6 上海交通大學,計算機科學與技術,工學博士

2016.9-2020.6 山東大學,軟件工程,工學學士


科研經歷

2023.2-2023.8 香港中文大學,科研助理

2022.7-2024.7 騰訊WXG,研究型實習生

2021.12-2022.5 微軟亞洲研究院,研究型實習生

2021.6-2021.8 阿里巴巴達摩院,研究型實習生


學術成果

  1. Yu Xia*, Fang Kong*, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, Shuai Li, “Convergence-Aware Online Model Selection with Time-Increasing Bandits”, The Web Conference (WWW), 2024.

  2. Fang Kong, Shuai Li, “Improved Bandits in Many-to-one Matching Markets with Incentive Compatibility”, Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024. 

  3. Fang Kong*, Xiangcheng Zhang*, Baoxiang Wang, Shuai Li, “Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization”, Transactions on Machine Learning Research (TMLR), 2024.

  4. Fang Kong, Canzhe Zhao, Shuai Li, “Best-of-three-worlds Analysis for Linear Bandits with Follow-the-regularized-leader Algorithm”, Proceedings of the 36th Conference on Learning Theory (COLT), 2023.

  5. Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao, Shuai Li. “Online Influence Maximization under Decreasing Cascade Model”, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

  6. Yichi Zhou, Fang Kong, Shuai Li, “Stochastic No-Regret Learning for General Games with Variance Reduction”, International Conference on Learning Representations (ICLR), 2023.

  7. Fang Kong, Shuai Li, “Player-optimal Stable Regret for Bandit Learning in Matching Markets”, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023.

  8. Fang Kong, Yichi Zhou, Shuai Li, “Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback”, International Conference on Machine Learning (ICML), 2022.

  9. Fang Kong, Junming Yin, Shuai Li, “Thompson Sampling for Bandit Learning in Matching Markets”, International Joint Conference on Artificial Intelligence (IJCAI), 2022.

  10. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2021.

  11. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “Combinatorial Online Learning based on Optimizing Feedbacks (in Chinese)”, Big Data Research, 2021.

  12. Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen, “Online Influence Maximization under Linear Threshold Model”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

  13. Fang Kong, Qizhi Li, Shuai Li, “A Survey on Online Influence Maximization” (in Chinese), Computer Science, 2020.



大发888娱乐城充值lm0| 百家乐官网走势图解| 太原百家乐的玩法技巧和规则| 大发888游戏平台 34| 新2百家乐官网娱乐城| 仙游县| 24山入宅择日| 大发888官方删除| 百家乐官网棋牌交友中心| 百家乐官网7scs| 真人百家乐官网是骗局| 风水24向| 百家乐必胜绝| 百家乐官网翻天快播粤语| 百家乐太阳城球讯网| 亿酷棋牌官方下载| 百家乐官网官| 丹阳棋牌游戏中心| 加州百家乐官网的玩法技巧和规则 | 足球注册网站| 百家乐百家乐视频| 线上kk娱乐城| 百家乐园游戏77sonci...| 永利娱乐场| 百家乐2号机器投注技巧| 娱乐城注册送68| 百家乐招商用语| 百家乐官网洗码全讯网| 大发888娱乐厂场| 百家乐官网必赢| 赌博游戏平台| 百家乐小九梭哈| 百家乐官网桌布尼布材质| 宝都棋牌游戏| 大发888娱乐场168| 什么叫百家乐的玩法技巧和规则 | 678百家乐官网博彩赌场娱乐网规则 | 百家乐官网职业打| 百家乐官网霸王闲| 现金百家乐游戏| 百家乐游戏新|