ag视讯打不开-AG全讯网puma

師資

EN       返回上一級       師資搜索
孔芳
助理教授
kongf@sustech.edu.cn

研究領域

在線學習,強化學習,機器學習


教育經歷

2020.9-2024.6 上海交通大學,計算機科學與技術,工學博士

2016.9-2020.6 山東大學,軟件工程,工學學士


科研經歷

2023.2-2023.8 香港中文大學,科研助理

2022.7-2024.7 騰訊WXG,研究型實習生

2021.12-2022.5 微軟亞洲研究院,研究型實習生

2021.6-2021.8 阿里巴巴達摩院,研究型實習生


學術成果

  1. Yu Xia*, Fang Kong*, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, Shuai Li, “Convergence-Aware Online Model Selection with Time-Increasing Bandits”, The Web Conference (WWW), 2024.

  2. Fang Kong, Shuai Li, “Improved Bandits in Many-to-one Matching Markets with Incentive Compatibility”, Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024. 

  3. Fang Kong*, Xiangcheng Zhang*, Baoxiang Wang, Shuai Li, “Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization”, Transactions on Machine Learning Research (TMLR), 2024.

  4. Fang Kong, Canzhe Zhao, Shuai Li, “Best-of-three-worlds Analysis for Linear Bandits with Follow-the-regularized-leader Algorithm”, Proceedings of the 36th Conference on Learning Theory (COLT), 2023.

  5. Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao, Shuai Li. “Online Influence Maximization under Decreasing Cascade Model”, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

  6. Yichi Zhou, Fang Kong, Shuai Li, “Stochastic No-Regret Learning for General Games with Variance Reduction”, International Conference on Learning Representations (ICLR), 2023.

  7. Fang Kong, Shuai Li, “Player-optimal Stable Regret for Bandit Learning in Matching Markets”, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023.

  8. Fang Kong, Yichi Zhou, Shuai Li, “Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback”, International Conference on Machine Learning (ICML), 2022.

  9. Fang Kong, Junming Yin, Shuai Li, “Thompson Sampling for Bandit Learning in Matching Markets”, International Joint Conference on Artificial Intelligence (IJCAI), 2022.

  10. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2021.

  11. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “Combinatorial Online Learning based on Optimizing Feedbacks (in Chinese)”, Big Data Research, 2021.

  12. Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen, “Online Influence Maximization under Linear Threshold Model”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

  13. Fang Kong, Qizhi Li, Shuai Li, “A Survey on Online Influence Maximization” (in Chinese), Computer Science, 2020.



沙龙网上娱乐| 百家乐官网在线直播| 皇冠开户网址| 海尔百家乐的玩法技巧和规则| 百家乐官网手机壳| 百家乐官网ipone| 利博国际| G3娱乐城| 百家乐官网波浪法则| 札达县| 皇冠足球投注图| 中金时时彩平台| 蜀都棋牌下载| 大发888信誉| 大发888 迅雷快传| 大发888 娱乐| 娱乐城开户送彩金| 皇室国际娱乐城| 九江市| 罗城| 在线百家乐官网有些一| 百家乐官网最新心得| 网上百家乐官网开户送现金| 百家乐官网压分规律| 百家乐官网投注方式| 百家乐官网解密软件| 一筒百家乐官网的玩法技巧和规则 | 信宜市| 百家乐官网号论坛博彩正网| 百家乐官网下路教学| 24山入宅择日| 百家乐真人投注网站| 百家乐赌博玩法技巧| 大发888百家乐| 资溪县| 百家乐官网如何买大小| 属狗的和虎的做生意好吗| 百家乐娱乐平台备用网址| 亚洲百家乐官网论坛| 个体老板做生意的风水| 战神百家乐的玩法技巧和规则|