ag视讯打不开-AG全讯网puma

師資

EN       返回上一級       師資搜索
孔芳
助理教授
kongf@sustech.edu.cn

研究領域

在線學習,強化學習,機器學習


教育經歷

2020.9-2024.6 上海交通大學,計算機科學與技術,工學博士

2016.9-2020.6 山東大學,軟件工程,工學學士


科研經歷

2023.2-2023.8 香港中文大學,科研助理

2022.7-2024.7 騰訊WXG,研究型實習生

2021.12-2022.5 微軟亞洲研究院,研究型實習生

2021.6-2021.8 阿里巴巴達摩院,研究型實習生


學術成果

  1. Yu Xia*, Fang Kong*, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, Shuai Li, “Convergence-Aware Online Model Selection with Time-Increasing Bandits”, The Web Conference (WWW), 2024.

  2. Fang Kong, Shuai Li, “Improved Bandits in Many-to-one Matching Markets with Incentive Compatibility”, Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024. 

  3. Fang Kong*, Xiangcheng Zhang*, Baoxiang Wang, Shuai Li, “Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization”, Transactions on Machine Learning Research (TMLR), 2024.

  4. Fang Kong, Canzhe Zhao, Shuai Li, “Best-of-three-worlds Analysis for Linear Bandits with Follow-the-regularized-leader Algorithm”, Proceedings of the 36th Conference on Learning Theory (COLT), 2023.

  5. Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao, Shuai Li. “Online Influence Maximization under Decreasing Cascade Model”, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

  6. Yichi Zhou, Fang Kong, Shuai Li, “Stochastic No-Regret Learning for General Games with Variance Reduction”, International Conference on Learning Representations (ICLR), 2023.

  7. Fang Kong, Shuai Li, “Player-optimal Stable Regret for Bandit Learning in Matching Markets”, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023.

  8. Fang Kong, Yichi Zhou, Shuai Li, “Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback”, International Conference on Machine Learning (ICML), 2022.

  9. Fang Kong, Junming Yin, Shuai Li, “Thompson Sampling for Bandit Learning in Matching Markets”, International Joint Conference on Artificial Intelligence (IJCAI), 2022.

  10. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2021.

  11. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “Combinatorial Online Learning based on Optimizing Feedbacks (in Chinese)”, Big Data Research, 2021.

  12. Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen, “Online Influence Maximization under Linear Threshold Model”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

  13. Fang Kong, Qizhi Li, Shuai Li, “A Survey on Online Influence Maximization” (in Chinese), Computer Science, 2020.



百家乐官网真人百家乐官网皇冠开户| 真人百家乐官网园| 怎样看百家乐牌| 济州岛娱乐场cns| 和记娱乐| 百家乐官网娱乐网代理佣金| 免费百家乐官网缩水软件| 百家乐龙虎| 澳门百家乐官网官方网址| 云顶会所| 百家乐官网威尼斯人| 赌场百家乐怎么破解| 会同县| 任我赢百家乐官网软件| 新澳博娱乐| 百家乐官网号游戏机| 来博| 百家乐开发公司| 网上赌百家乐官网被抓应该怎么处理| 太阳城蓝山园| 澳门百家乐官网单注下限| 赌神网百家乐官网2| 锦江国际娱乐| 天猫百家乐娱乐城| 澳门百家乐官网是骗人的| 百家乐官网去哪里玩最好| 大发888官方6222| 百家乐官网辅助器| 洛川县| 百家乐官网讲坛汉献| 至尊百家乐官网20130301| 网上百家乐官网大赢家筹码| 爱博彩到天上人间| 津市市| 本溪棋牌娱乐网| 察哈| 筹码百家乐的玩法技巧和规则| 菲律宾百家乐官网游戏| 百家乐太阳娱乐网| 葡京百家乐官网的玩法技巧和规则| 大发888游戏平台17|