ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
Fang Kong
Assistant Professor

Research Interests

Online Learning, Reinforcement Learning, Machine Learning


Education

2020.9-2024.6 Shanghai Jiao Tong University, PhD in Computer Science

2016.9-2020.6 Shandong University, Bachelor’s Degree in Software Engineering


Research Experiences

2023.2-2023.8 The Chinese University of Hong Kong, Research Assistant

2022.7-2024.7 Tencent WXG, Research Intern

2021.12-2022.5 Microsoft Research Asia, Research Intern

2021.6-2021.8 Alibaba DAMO Academy, Research Intern


Publications

  1. Yu Xia*, Fang Kong*, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, Shuai Li, “Convergence-Aware Online Model Selection with Time-Increasing Bandits”, The Web Conference (WWW), 2024.

  2. Fang Kong, Shuai Li, “Improved Bandits in Many-to-one Matching Markets with Incentive Compatibility”, Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024. 

  3. Fang Kong*, Xiangcheng Zhang*, Baoxiang Wang, Shuai Li, “Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization”, Transactions on Machine Learning Research (TMLR), 2024.

  4. Fang Kong, Canzhe Zhao, Shuai Li, “Best-of-three-worlds Analysis for Linear Bandits with Follow-the-regularized-leader Algorithm”, Proceedings of the 36th Conference on Learning Theory (COLT), 2023.

  5. Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao, Shuai Li. “Online Influence Maximization under Decreasing Cascade Model”, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

  6. Yichi Zhou, Fang Kong, Shuai Li, “Stochastic No-Regret Learning for General Games with Variance Reduction”, International Conference on Learning Representations (ICLR), 2023.

  7. Fang Kong, Shuai Li, “Player-optimal Stable Regret for Bandit Learning in Matching Markets”, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023.

  8. Fang Kong, Yichi Zhou, Shuai Li, “Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback”, International Conference on Machine Learning (ICML), 2022.

  9. Fang Kong, Junming Yin, Shuai Li, “Thompson Sampling for Bandit Learning in Matching Markets”, International Joint Conference on Artificial Intelligence (IJCAI), 2022.

  10. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2021.

  11. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “Combinatorial Online Learning based on Optimizing Feedbacks (in Chinese)”, Big Data Research, 2021.

  12. Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen, “Online Influence Maximization under Linear Threshold Model”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

  13. Fang Kong, Qizhi Li, Shuai Li, “A Survey on Online Influence Maximization” (in Chinese), Computer Science, 2020.

大发888博彩论坛贴吧| 大发888娱乐场下载 zhidu| 百家乐官网电话投注怎么玩| 百家乐全讯网娱乐城| 网上百家乐官网合法吗| 百家乐官网投注限额| 百家乐大路小路三珠路| 网络百家乐官网模拟投注| 网上百家乐官网有人赢过嘛| 致胜百家乐的玩法技巧和规则| 百家乐官网打水论坛| 维西| 百家乐发牌靴发牌盒| 百家乐官网赢钱皇冠| 大发888 894| 百家乐有真假宝单吗| 百家乐官网编单短信接收| 百家乐出千的方法| 实战百家乐官网的玩法技巧和规则| 海王星娱乐网| 百家乐五湖四海娱乐场开户注册 | 马牌百家乐官网现金网| 大发888官网 df888ylcxz46| 百家乐官网游戏平台有哪些哪家的口碑最好| 大发888大家赢娱乐| 百家乐如何投注| 金海岸百家乐官网娱乐城| 金花娱乐城注册| 百家乐赌博规| 太阳城百家乐筹码租| 15人百家乐官网桌| 梁平县| 美高梅娱乐城网址| 大发888亚洲游戏下载| 悦榕庄百家乐的玩法技巧和规则| 百家乐技巧娱乐博彩| 百家乐官网赌博机假在哪里| 百家乐官网节目视频| 安新县| 无锡百家乐的玩法技巧和规则| 百家乐能赚大钱吗|