師資
研究方向:
計算機視覺、醫學圖像及信息處理、機器學習、人工智能等
教育背景
◆ 1999-2002中科院北京自動化所模式識別國家重點實驗室,博士
◆ 1996-1999山東工業大學(現山東大學),碩士
◆ 1992-1996山東工業大學(現山東大學),學士
工作經歷
◆ 2019 –至今南方科技大學計算機系教授
◆ 2015-2019 英國鄧迪大學科學與工程學院計算機系Reader,計算機系國際合作主任
◆ 2010-2015 英國鄧迪大學科學與工程學院計算機系高級講師
◆ 2007-2010 英國貝爾法斯特女王大學計算機系講師
◆ 2005-2007 英國倫敦大學瑪利亞女王學院計算機系,博士后研究員
◆ 2003-2005 法國國家信息與自動化研究院(INRIA),博士后研究員
◆ 2002-2003 新加坡南洋理工大學,博士后研究員
榮譽與獎項
◆ 2010 IEEE高級會員
◆ 2017年,在加拿大魁北克舉辦的國際基于核磁共振的腦部白質高亮區域分割競賽中 (MICCAI 2017- Brain WMH Segmentation Challenge) 獲冠軍
◆ 2016年和UCL一起獲Olea Medical- Olea Innovators contest prize
◆ 2015 年, 在德國慕尼黑,由 MICCAI15 舉辦的內窺鏡視覺競賽中的兩個項目上取得第一名的成績(Endoscopic Vision Challenge on sub challenges of Polyp Localization and Early Barret’s Cancer detection), MICCAI15, Munich
◆ 2014 年在瑞典斯坦哥爾摩舉辦的國際醫學圖像識別競賽(“Performance Evaluation of Indirect Immunofluorescence Image Analysis Systems”–ICPR 2014)中取得優異成績,所有項目(cell and specimen classification)上均獲第一
◆ 2014 年英國國際醫學圖像理解和分析大會的最佳癌癥類論文獎
◆ 2014 年哈佛大學舉辦的腦部癌癥病理圖片分割競賽中取得優異成績。(Brain Tumour Digital Pathology Challenge –MICCAI2014- 醫學圖像處理頂級會議),算法性能第二
◆ 2008 年國際機器視覺和圖像處理大會的最佳論文獎。(International Machine Vision and Image Processing Conference 2008
◆ 在 2006 年由歐洲 PASCAL 主辦的國際視覺目標物體的分類競賽(PASCAL Visual Object Classification Challenge)中所有 10 個項目上取得優異成績,在多個項目上第一
◆ 在 2005 年在第一屆國際視覺目標物體分類競賽(PASCAL Visual Object Classification Challenge)中所有 8 個項目上取得優異成績,在多個項目上第一
◆ 2002 年獲中科院院長獎學金優秀獎
代表文章
1. Hugo J. Kuijf, & Jianguo Zhang, et al, Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities: Results of the WMH Segmentation Challenge, IEEE Transactions on Medical Imaging, 2019.( Summary of the Contest, and Winning method for the International challenge on brain White Matter Hyperintensities (WMH) segmentation, MICCAI 2017. See our NeuroImage paper for the details of the method)
2. Hu JF, Zheng WS, Ma LY, Wang G, Lai JH, and Zhang J, Early Action Prediction by Soft Regression, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019 .
3. Hongwei Li, Gongfa Jiang, Ruixuan Wang, Jianguo Zhang, Zhaolei Wang, Wei-Shi Zheng, BjoernMenze, Fully Convolutional Network Ensembles for White Matter Hyperintensities Segmentation in MR Images, NeuroImage, 2018 (Winning method for the International challenge on brain White Matter Hyperintensities (WMH) segmentation, MICCAI-2017).
4. S. Bano, T. Suveges, J Zhang, S McKenna (2018), Multimodal, Egocentric Analysis of Focused Interactions, IEEE Access, 2018.
5. Sotirios Bisdas, Haocheng Shen, Steffi Thust, VasileiosKatsaros, George Stranjalis, Christos Boskos, Sebastian Brandner, and Jianguo Zhang, (2018) Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study, Scientific Report, Nature (Winning Methods for the Olea Innovators Contest prize for technology transfer).
6. Yan Li, Junge Zhang, Jianguo Zhang, Kaiqi Huang, Mixed Supervised Object Detection with Robust Objectness Transfer, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2018.
7. Daniel R Morales, Rob Flynn, Jianguo Zhang, Emmanuel Trucco, Jennifer K Quint, Kris Zutis (2018) External validation of ADO, DOSE, COTE and CODEX at predicting death in primary care patients with COPD using standard and machine learning approaches, Respiratory Medicine, Vol. 138, pp.150-155.
8. Siyamalan Manivannan, Wenqi Li, Jianguo Zhang, Emanuele Trucco, Stephen McKenna (2017), Structure Prediction for Gland Segmentation with Hand-Crafted and Deep Convolutional Features, IEEE Trans. on Medical Imaging, 2017, DOI: 10.1109/TMI.2017.2750210.
9. Shaofan Lai, Weishi Zheng, Jiangfang Hu, Jianguo Zhang, Global-Local Temporal Saliency Action Prediction, IEEE Transactions on Image Processing, 2017.
10. J. Hu, W. Zheng, J. Lai, J Zhang, Jointly Learning Heterogeneous Features for RGB-D Activity Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol.39 (11), 2017, pp.2186-2200.
11. Siyamalan Manivannan, Wenqi Li, Shazia Akbar, Ruixuan Wang, Jianguo Zhang and Stephen J. McKenna An Automated Pattern Recognition System for Classifying Indirect Immunofluorescence Images of HEp-2 Cells and Specimens, Pattern Recognition, Volume 51, March 2016, p. 12-26 (Winning Methods for ICPR I3A Contest).
12. Wenqi Li, Maria Coats, Jianguo Zhang and Stephen McKenna (2015), Discriminating Dysplasia: optical tomographic texture analysis of colorectal polyps, Medical Image Analysis.
13. Xiaojuan Wang, Wei-Shi Zheng, Xiang Li, and Jianguo Zhang, Cross-scenario Transfer Person Re-identification, IEEE Trans Circuits and Systems for Video Technology.
Refereed Conference Publications (selected)
1. Hongwei Li, Johannes C Paetzold, AnjanySekuboyina, Florian Kofler, Jianguo Zhang, Jan S Kirschke, BenediktWiestler, and BjoernMenze, DiamondGAN: Unified Multi-Modal Generative Adversarial Networks for MRI Sequences Synthesis, MICCAI 2019.
2. Xionghui Wang, Jian-Fang Hu, Jianhuang Lai, Jianguo Zhang and Wei-Shi Zheng, Progressive Teacher-student Learning for Early Action Prediction, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019
3. Jiaxin Zhuang, JiabinCai, Ruixuan Wang, Jianguo Zhang, Weishi Zheng CARE: Class Attention to Regions of Lesion for Classification on Imbalanced DataMedical Imaging with Deep Learning Conference (MIDL -- in par with MICCAI) 2019
4. Jian-Fang Hu, Wei Shi Zheng, Jiahui Pan, Jian-Huang Lai, Jianguo Zhang (2018), Deep Bilinear Learning for RGB-D Action Recognition, European Conference on Computer Vision (ECCV).
5. Yan Li, Junge Zhang, jianguo Zhang, Kaiqi Huang, Discriminative Learning of Latent Features for Zero-Shot Recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
6. Hongwei Li, Jianguo Zhang, Mark Meuhlau, Jan KirschkeandBjoernMenze (2018), “Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation”, BrainLesin International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI).
7. Haocheng Shen, Ruixuan Wang, Jianguo Zhang, Stephen McKenna (2017), Boundary-aware Fully Convolutional Network for Brain Tumor Segmentation, MICCAI, 2017 (top conference in medical image analysis) https://doi.org/10.1007/978-3-319-66185-8_49
8. Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang (2017), Beyond triplet loss: a deep quadruplet network for person re-identification, IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
其他信息
Associate Editor of IEEE Trans. On Multimedia (2019 – present)
Associate Editor of IET Computer Vision (2017 - present)
Associate Editor of EURASIP Advances in Signal Processing (2016-present)
Gest Editor of Pattern Recognition (2012)
Area Chair of BMVC (2010 –present)
PCs/reviews for ICCV, CVPR, ECCV, AAAI, IEEE PAMI, IJCV etc
Founding Chair and Organizer of VECTaR 2013 2012, 2011, 2010, 2009 (in conjunction with ICCV 2013, ECCV12, ICCV11 etc),