ag视讯打不开-AG全讯网puma

師資

EN       返回上一級       師資搜索
方小虎
助理教授

方小虎博士,于2015年獲得香港中文大學博士學位,2015-2016年于香港中文大學任博士后研究員,2017-2019年于加拿大滑鐵盧大學任博士后研究員,2021年9月加入南方科技大學深港微電子學院。方小虎博士長期從事射頻集成電路,射頻前端電路,微波與毫米波高性能無線發射機方面的研究,在研發寬帶,高效率,低成本,可復用的4G和5G無線射頻前端電路上取得了一系列優異成果,總計發表論文30余篇,其中以第一作者或通訊作者身份發表的SCI論文15余篇。現為IEEE高級會員、擔任IEEE TMTT、IEEE MWCL、IEEE TCAS-I 和 TCAS-II、MTT-S IMS等知名期刊和會議的審稿人。

 

教育經歷:

2015年,香港中文大學,博士學位

2011年,華中科技大學,碩士學位

2008年,華中科技大學,學士學位

 

工作經歷:

2021年9月至今,南方科技大學,助理教授

2017至2019年,滑鐵盧大學,博士后研究員

2015至2016年,香港中文大學,博士后研究員

 

研究簡介:

微波與毫米波射頻前端設計

高能效發射機及其線性化技術

寬帶和高效率射頻功率放大器

 

所獲榮譽:

孔雀計劃——C類人才

香港研究生獎學金, 2011-2014

 

代表文章:

[J01] Xiaohu Fang, Wenqi Dai, Jie Shi, "A Linear and Wideband GaN MMIC Distributed Efficient Power Amplifier Design Using Unequal Power Splitting and Bandpass Unit Network," IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2024.3480451(Early Access). 2024

[J02] X. Fang*, R. Chen and J. Shi, "Switchless Class-G Power Amplifiers: Generic Theory and Design Methodology Using Packaged Transistors," IEEE Trans. Microw. Theory Techn., vol. 72, no. 8, pp. 4625-4637, Aug. 2024.

[J03] X. Fang*, J. Shi, C. Wei, Y. Duan, P. Li and Z. Wang, "A Linear Millimeter-Wave GaN MMIC Doherty Power Amplifier With Improved AM-AM and AM-PM Characteristics," IEEE Trans. Microw. Theory Techn., vol. 72, no. 8, pp. 4597-4610, Aug. 2024.

[J04] J. Shi, X. Fang*, C. Wei, T. Lin, L. Zhao and K. -K. M. Cheng, "Design of a Highly Efficient Class-F GaN MMIC Power Amplifier Using a Multi-Function Bias Network and a Harmonic-Isolation L-C Resonator," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 12, pp. 5208-5219, Dec. 2023.

[J05] J. Shi, X. Fang*, H. Yu, J. Sui and K. -K. M. Cheng, “Novel Wideband Millimeter-wave GaN Power Amplifier Design using Transistors with Large Drain Capacitance and High Optimum Load Impedance,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 12, pp. 4309-4313, Dec. 2023.

[J06] J. Shi, W. Dai, X. Fang*, X Zhou, J Sui, J Xia, K Cheng, “Novel Wideband Fully Integrated GaN Power Amplifier Design Using a Hybrid Bandpass-Lowpass Output Matching Network,” IEEE Microwave and Wireless Technology Letters, vol. 33, no. 8, pp. 1187-1190, Aug. 2023.

[J07] X. Fang, J. Xia*, and S. Boumaiza, “A 28-GHz beamforming Doherty power amplifier with enhanced AM-PM characteristic,” IEEE Trans. Microw. Theory Techn. vol. 68, no. 7, 3017-3027, Jun. 2020.

[J08] J. Xia, X. Fang*, and S. Boumaiza, “Millimeter wave SOI-CMOS power amplifier with enhanced AM-PM characteristic,” IEEE Access, vol. 8, pp. 8861-8875, 2020.

[J9] M. Liu, X. Fang*, and S. Boumaiza, “Dual band 3-way Doherty amplifier with extended back-off power range and bandwidth,” IEEE Trans Circuits Syst. II, Exp. Brief., vol. 67, no. 2, 270-274, Feb. 2020.

[J10] Y. Li, X. Fang*, A. Jund, H. Huang and S. Boumaiza, “Two-port network theory based design method for broadband Class J Doherty amplifiers,” IEEE Access., vol. 7, pp. 51028-51038, 2019.

[J11] X. Fang*, A. Cheng and S. Boumaiza, “Linearity enhanced Doherty power amplifier using output combining network with pre-defined AM-PM characteristic,” IEEE Trans. Microw. Theory Techn. vol. 67, no. 1, 195-204, Jan. 2019.

[J12] X. Fang*, H. Liu, K. M. Cheng, S. Boumaiza, “Modified Doherty amplifier with extended bandwidth and back-off power range using optimized combining currents,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, 5347-5357, Dec. 2018.

[J13] X. Fang*, H. Liu, K. M. Cheng, S. Boumaiza, “Two-way Doherty power amplifier efficiency enhancement by incorporating transistors’ nonlinear phase distortion,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 2, pp. 168–170, Feb 2018.

[J14] X. Fang*, H. Liu, K. M. Cheng, “Extended Efficiency Range, Equal-cell Doherty Amplifier Design Using Explicit Circuit Model,” IEEE Microw. Wireless Compon. Lett. vol. 27, no. 5, pp. 497–499, May 2017.

[J15] X. Fang*, K. M. Cheng, “Improving power utilization factor of broadband Doherty amplifier by using band-pass auxiliary transformer,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 9, 2811-2820, Sep. 2015.

[J16] X. Fang*, K. M. Cheng, “Extension of high-efficiency range of Doherty amplifier by using complex combining load,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 2038–2047, Sep. 2014.

SCI(共同作者):

[J17] J. Xie, K. -K. M. Cheng, X. Fang and P. Yu, "Extension of Output Backoff Range in Three-Stage Load Modulated Balanced Amplifier Using Asymmetric Coupling and Non-Z0 Load," IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2024.3425168.

[J18] J. Xie, K. -K. M. Cheng, P. Yu and X. Fang, "Dual-Band Pseudo-Doherty Load Modulated Balanced Amplifier Design With Arbitrarily Selected Frequency Bands," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 8, pp. 3665-3669, Aug. 2024

[J19] X. Y. Zhou, W. S. Chan, W. Feng, X. Fang, T. Sharma and S. Chen, “Broadband Doherty Power Amplifier Based on Coupled Phase Compensation Network,” IEEE Trans. Microw. Theory Techn, vol. 70, no. 1, pp. 210-221, Jan. 2022.

[J20] Liu*, K. M. Cheng, C. Zhai and X. Fang, “Peak-Current-Ratio enhanced compact symmetrical Doherty amplifier design by using active harmonic control”, IEEE Trans. Microw. Theory Techn., vol. 69, no. 6, pp. 3158–3170, Jun. 2021.

[J21] H. Liu*, X. Fang and K. M. Cheng, “Bandwidth Enhancement of Frequency Dispersive Doherty Power Amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 2, 185-188, Feb. 2020.

[J22] J. Xia*, X. Fang, and S. Boumaiza, “60-GHz Power Amplifier in 45-nm SOI-CMOS Using Stacked Transformer-Based Parallel Power Combiner,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 8, 711-713, Aug. 2018.

[J23] X. Zhou*, S. Zheng, W. Chan, X. Fang and D. Ho, “Post-matching Doherty power amplifier with extended back-off range based on self-generated harmonic injection”, IEEE Trans. Microw. Theory Techn., vol. 66, no. 4, 1951-1963, Apr. 2018.

會議論文:

[24] X. Yu, X. Fang*, J. Shi, G. Lv, C. Wei, J. Sui, “Deep Neural Network based Stable Digital Predistortion using ELU Acti-vation for Switchless Class-G Power Amplifier,” 2024 IEEE MTT-S International Wireless Symposium (IWS), Beijing, China. 

[25] J. Shi, X. Fang*, Q. Zhang, H. Yu, H. Wang, “Theoretical Analysis and Experimental Validation of Enhancing Doherty Amplifier Gain via Asymmetrical Input Power Splitting,” 2024 IEEE MTT-S International Wireless Symposium (IWS), Beijing, China. 

[26] J. Shi, X. Fang*, X. Zhou, X. Yan, W. Lin and L. Zhao, "A GaN MMIC Inverse Class-F Power Amplifier Using Co-Designed Bias Network and LC Resonator," 2024 15th Global Symposium on Millimeter-Waves & Terahertz (GSMM), Hong Kong, 2024, pp. 153-155

[27] W. Huang, X. Fang*, W. Lin, G. Huang, X. Wang and L. Zhao, "A Wideband Millimeter-Wave GaN Low-Noise Amplifier Using Multi-Stage Feedback Compensation," 2023 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chengdu, China, 2023, pp. 1-3

[28] B. Wei, J. Shi, X. Fang*, X. Zhou, Q. Wang and H. Yu, "Stability and Efficiency Enhancement of a C-band Class-F Power Amplifier Using a Coupling Compensation Method," 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), Guangzhou, China, 2022, pp. 1-4.

[29] J. Shi, X. Fang*, J. Sui, X. Zhou, H. Yu and H. Yu, "A Linear Envelope Tracking Power Amplifier with Varactor-based Phase Compensation Network," 2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (IWEM), Guangzhou, China, 2021, pp. 1-3.

[30] J. Sui, X. Fang and Z. Luo, "A Four-Element 5G MIMO Antenna Design for Mobile Terminals Using Self-Curing Decoupling Technique," 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Shenzhen, China, 2021, pp. 117-119.

[31] J. Shi, X. Fang* and X. Zhou, "A New Method to Design Highly Efficient C-band Harmonic-tuned Power Amplifiers," 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Shenzhen, China, 2021, pp. 154-156.

[32] X. Y. Zhou, W. S. Chan, W. J. Feng, X. Fang, T. Sharmar, and Z. Liu, “Bandwidth enhanced Doherty power amplifier based on coupled phase compensation network with specific optimal impedance,” IEEE MTT-S International Wireless Symposium (IWS 2020), Shanghai, China., 2020, pp. 1-3.

[33] X. Fang*, H. Golestaneh and S. Boumaiza, “Broadband and linearity enhanced Doherty power amplifier using complex-valued Load Modulation”, IEEE MTT-S 2018 Int. Microw. Symp. Dig., USA, Jun., 2018.

[34] H. Liu*, X. Fang and K. M. Cheng, “Built-in AM/AM and AM/PM distortion study of generalized symmetrical Doherty amplifier”, Proc. European Microwave Conference, pp. 148–151, Oct. 2017

[35] X. Fang* and K. M. Cheng, "Broadband, wide efficiency range, Doherty amplifier design using frequency-varying complex combining load", IEEE MTT-S 2015 Int. Microw. Symp. Dig., USA, May, 2015.

[36] X. Fang, G. Wu*, W. Li, Y. Zhai, "A lumped-element analog predistorter for VHF application", IEEE Int. Symp. on Signals Systems and Electronics, Nanjing, China, Sep. 2010.

百家乐官方网站| 网络百家乐官网游戏机怎么破解| 威尼斯人娱乐城网址是| 大发888娱乐城高手| 邓州市| 百家乐强对弱的对打法| 上饶县| 富易堂百家乐娱乐城| 大发88817| 现金百家乐官网下载| 百家乐连跳规律| 百家乐官网龙虎的投注法| 博彩生物| 百家乐优惠现金| 长白| 最新百家乐出千赌具| 百家乐官网网站排名| 大发888游戏下载官网免费| 做生意风水摆件| 百家乐官网娱乐备用网址| 百家乐官网稳赚的方法| 法拉利百家乐的玩法技巧和规则| 德州扑克入门| 汇丰百家乐娱乐城| 夜总会百家乐官网的玩法技巧和规则 | 博彩百家乐官网字谜总汇二丹东| 大发888官wang| 百家乐赌场策略论坛| JJ百家乐官网的玩法技巧和规则 | 360博彩通| 百家乐正品| 百家乐最新缆| 百家乐开户送18元| 百家乐官网平注法规则| 百家乐官网科学打法| 百家乐官网注册赠金| 德州扑克网上平台| 百家乐透明发牌靴| 加州百家乐官网的玩法技巧和规则| 大发扑克网站| 郑州百家乐官网的玩法技巧和规则 |