ag视讯打不开-AG全讯网puma

師資

EN       返回上一級       師資搜索
宋軒
副教授、研究員
songx@sustech.edu.cn


研究方向:

人工智能,大數據分析,城市計算,智慧城市

教育背景

◆ 2005-2010,博士學位(信號與信息處理) ---北京大學, 北京中國

◆ 2001-2005,學士學位 (信息工程) ---吉林大學, 吉林省, 中國

工作經歷

◆ 2010---2012 博士后研究員, 東京大學,空間信息科學中心,日本

◆ 2012---2015特任助理教授, 東京大學,空間信息科學中心,日本

◆ 2015--201 特任副教授, 東京大學,空間信息科學中心,日本

◆ 2018---2019 主任研究員(終身職位), 日本國家產業技術綜合研究所,人工智能研究中心,日本

◆ 2019年1月---至今 副教授,南方科技大學

榮譽與獎項

◆ 日本卓越研究員,頒發機構:日本文部科學省,2017年。(日本國家最高級別青年人才計劃,當年共計72人入選,唯一的中國籍入選者)

◆ ACM普適計算年會(UbiComp)最佳論文提名獎,頒發機構:國際計算機學會(ACM),2015年。

◆ 北京大學信息學院學術十杰,頒發機構:北京大學,2010年。

代表文章

(Authors associated with * are/were doctoral or master student I have supervised)

 

(33) Z. Fan*, X. Song, T. Xia, R. Jiang, R. Shibasaki and R. Sakuramachi, “Online Deep Ensemble Learning for Predicting Citywide Human Mobility”, Proc. of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) (UbiComp 2018), 2018.

(32) H. Zhang*, X. Song, T. Xia, M. Yuan, Z. Fan, R. Shibasaki, Y. Liang, “Battery electric vehicles in Japan: Human mobile behavior based adoption potential analysis and policy target response”, Applied Energy, 2018.

(31) R. Jiang*, X. Song, Z. Fan, T. Xia, Q. Chen, Q. Chen, and R. Shibasaki, “Deep ROI-Based Modeling for Urban Human Mobility Prediction”, Proc. of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) (UbiComp 2018), 2018.

(30) R.Jiang*, X. Song, Z. Fan, T. Xia, Q. Chen, S. Miyazawa, R. Shibasaki, “DeepUrbanMomentum: An Online Deep-Learning System for Short-Term Urban Mobility Prediction”, to appear in Proc. of Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), 2018.

(29)X. Song, R. Shibasaki, N. Yuan, X. Xie, T. Li, R. Adachi, “DeepMob: Learning Deep Knowledge of Human Emergency Behavior and Mobility from Big and Heterogeneous Data”, ACM Transactions on Information Systems (ACM TOIS), 35(4): 41, 19 pages, 2017.

(28)X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, N. Yuan, X. Xie, “Prediction and Simulation of Human Mobility Following Natural Disasters”, ACM Transactions on Intelligent Systems and Technology (ACM-TIST), 8(2): 29, 2017.

(27) Z. Fan*, X. Song, R. Shibasaki, T. Li,R. Adachi,“CityCoupling: Bridging Intercity Human Mobility”, Proc. of ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 2016.

(26) X. Song, H. Kanasugi, R. Shibasaki, “DeepTransport: Prediction and Simulation of Human Mobility and Transportation Mode at a Citywide Level”, Proc. of 25th International Joint Conference on Artificial Intelligence (IJCAI), 2016.

(25) Z. Fan*, A. Arai, X. Song, A. Witayangkurn, H. Kanasugi, R. Shibasaki, ”A Collaborative Filtering Approach to Citywide Human Mobility Completion from Sparse Call Records”, Proc. of 25th International Joint Conference on Artificial Intelligence (IJCAI), 2016.

(24) Q. Chen*, X. Song, H. Yamada, R. Shibasaki, “Learning Deep Representation from Big and Heterogeneous Data for Traffic Accident Inference”, Proc. of Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), pp. 338-344, 2016.

(23)X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, N. Yuan, X. Xie, “A Simulator of Human Emergency Mobility following Disasters: Knowledge Transfer from Big Disaster Data”, Proc. of Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), pp. 730-736, 2015.

(22) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki,”Object Discovery: Soft Attributed Graph Mining”, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 38(3): 532-545, 2016.

(21) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki, “From RGB-D Images to RGB Images: Single Labeling for Structural Model Mining”, ACM Transactions on Intelligent Systems and Technology (ACM-TIST), 6(2): 16, 2015.

(20) Z. Fan*, X. Song, R. Shibasaki, R. Adachi, “CityMomentum: An Online Approach for Crowd Behavior Prediction at a Citywide Level”, Proc. of ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp),pp. 559-569,2015.(Honorable Mention Award)

(19)X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, “Prediction of Human Emergency Behavior and their Mobility following Large-scale Disaster”, Proc. of 20th SIGKDD conference on Knowledge Discovery and Data Mining (KDD 2014), pp. 5-14, 2014.

(18) Z. Fan*, X. Song, R. Shibasaki, “CitySpectrum: A Non-negative Tensor Factorization Approach”, Proc. of ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), pp. 213-223, 2014.

(17) X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, “Intelligent System for Urban Emergency ManagementDuring Large‐scale Disaster”, Proc. of Twenty-Eighth AAAI Conference onArtificial Intelligence (AAAI),pp. 458-464, 2014.

(16) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki, “When 3D Reconstruction Meets Ubiquitous RGB-D Images”, Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 700-707, 2014.

(15) Q. Zhang*,X. Song, X. Shao, H. Zhao, R. Shibasaki, “Attributed Graph Mining and Matching: An Attempt to Define and Extract Soft Attributed Patterns”, Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1394-1401, 2014.

(14) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki, “Semi-supervised Learning of 3D Object Models and Point Labeling from a Large and Complex Environment”, Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 3082-3089, 2014.

(13) X. Song, Q. Zhang, Y. Sekimoto, T. Horanont, S. Ueyama, R. Shibasaki, “Modeling and Probabilistic Reasoning of Population Evacuation During Large-scale Disaster”, Proc. of 19th SIGKDD conference on Knowledge Discovery and Data Mining (KDD 2013),pp. 1231-1239, 2013.

(12) X. Song, Q. Zhang, Y. Sekimoto, T. Horanont, S. Ueyama, R. Shibasaki, "Intelligent System for Human Behavior Analysis and Reasoning Following Large-Scale Disasters," IEEE Intelligent Systems, vol. 28, no. 4, pp. 35-42, July-Aug. 2013.

(11) X. Song, X. Shao, Q. Zhang, R. Shibasaki, H. Zhao, J. Cui, H. Zha, "A Fully Online and Unsupervised System for Large and High Density Area Surveillance: Tracking, Semantic Scene Learning and Abnormality Detection",ACM Transactions on Intelligent Systems and Technology (ACM-TIST), 4(2): 20, 2013.

(10) X. Song, H. Zhao, J. Cui, X. Shao, R. Shibasaki, H. Zha, "An Online System for Multiple Interacting Targets Tracking: Fusion of Laser and Vision, Tracking and Learning",ACM Transactions on Intelligent Systems and Technology (ACM-TIST), 4(1): 18, 2013.

(9) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki, “Learning Graph Matching: Oriented to Category Modeling from Cluttered Scenes”,Proc. of IEEE International Conference on Computer Vision (ICCV),pp. 1329-1336, 2013.

(8) Q. Zhang*, X. Song, X. Shao, H. Zhao, R. Shibasaki, “Unsupervised 3D Category Discovery and Point Labeling from a Large Urban Environment”, Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2685-2692, 2013.

(7) Q. Zhang*, X. Song,X. Shao, H. Zhao, R. Shibasaki, "Category Modeling from Just a Single Labeling: Use Depth Information to Guide the Learning of 2D Models",Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),pp. 193-200, 2013.

(6) X. Song, X. Shao, Q. Zhang, R. Shibasaki, H. Zhao, H. Zha, "Laser-based Intelligent Surveillance and Abnormality Detection in Extremely Crowded Scenarios", Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2170-2176, 2012.

(5) X. Song, X. Shao, R. Shibasaki, H. Zhao, J. Cui, H. Zha, "A novel laser-based system: Fully online detection of abnormal activity via an unsupervised method", Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp.1317-1322, 2011.

(4) X. Song, X. Shao, H. Zhao, J. Cui, R. Shibasaki, H. Zha, "An Online Approach: Learning-Semantic-Scene-by-Tracking and Tracking-by-Learning-Semantic-Scene", Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1652-1659, 2010.

(3) X. Song, H. Zhao, J. Cui, X. Shao, R. Shibasaki, H. Zha, "Fusion of Laser and Vision for Multi-target Tracking via On-line Learning", Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp.406-411, 2010.

(2) X. Song, J. Cui, H. Zha, H. Zhao, "Vision-based Multiple Interacting Targets Tracking via On-line Supervised Learning", Proc. of European Conference on Computer Vision (ECCV), pp.642-655, 2008.

(1) X. Song, J. Cui, X. Wang, H. Zhao, H. Zha, "Tracking Interacting Targets with Laser Scanner via On-line Supervised Learning", Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp.2271-2276, 2008.


百家乐官网又称为什么| 澳门赌百家乐心法| 新濠峰百家乐官网的玩法技巧和规则 | 九台市| 百家乐官网作弊知识| 百家乐官网庄闲桌| 大英县| 网络百家乐| E乐博百家乐官网娱乐城| 大发888优惠代码| 百家乐官网百家乐官网技巧| 555棋牌游戏| 大玩家百家乐官网的玩法技巧和规则 | 六合彩百家乐有什么平码| 大发888官方网站| 真人百家乐网西陆| 红足一世| 银河百家乐的玩法技巧和规则| 冷水江市| 太阳城娱乐管理网| 什么百家乐平注法| 百家乐官网出千方法技巧| 二爷百家乐的玩法技巧和规则| 汾阳市| 大发888官方hgx2dafa888gwd| 百家乐官网视频多开| 百家乐官网红桌布| 百家乐官网单跳打法| 基础百家乐官网的玩法技巧和规则 | 百家乐赌场娱乐| 赌博百家乐官网的乐趣| 大发888最新版本下载| 澳门百家乐然后赢| 圣安娜百家乐官网代理| 战神娱乐城| 大发888娱乐场c17| 百家乐赌经| 风水24向| 三元玄空24山坐向开门| 百家乐官网好津乐汇| 平远县|