師資
個人簡介:
南方科技大學醫學院副院長、教授,生物化學系主任,博士生導師。曾任德克薩斯大學健康中心教授,著重研究蛋白質穩態調控的機理和功能。培養40多名學生,博士,博士后。研究長期被美國NIH,癌癥協會及多個私人基金會支持。擔任多個國際基金評審專家和學術雜志編委。課題組的研究在多個國際雜志發表包括Nature,PNAS,JCB,JBC,BMC,Cancer Research,Scientific Reports等等。
教育背景:
1985 - 1989 武漢大學 化學 學士;
1989 - 1991 波士頓大學 化學 碩士;
1991 - 1996 紐約州立大學石溪分校及冷泉港實驗室 生物化學 博士
工作經歷:
1997 - 2002 加州理工學院 生物 博士后;
2002 - 2020 德克薩斯大學健康中心 助理教授,(終生)副教授,(終生)教授;
2020 - 現在 南方科技大學醫學院 教授、生物化學系主任
獲獎情況及榮譽:
2006年 美國 癌癥研究協會少數族裔院校教授學者獎
1998-2001年 美國白血病基金會 博士后獎
1996年 紐約州立大學石溪分校博士生研究獎
研究領域:
蛋白質穩態在健康和疾病功能影響。蛋白質穩態和質量控制對細胞的正常生命活動至關重要。蛋白質穩態異常導致多種疾病,包括腫瘤和神經退行性疾病。實驗室主要利用酵母菌和人的細胞體系, 開展蛋白質修飾和泛素化引起蛋白質降解的機理研究。在此基礎上,我們將研究蛋白質穩態調控機制及其在多項疾病包括癌癥和老年神經性疾病中的作用。具體研究方向有以下:
1)利用酵母菌做大規模的篩選與蛋白質穩態調控疾病有關的基因。
2)蛋白質泛素化是如何調控細胞內各種通路(包括DNA修復,細胞周期調控,自噬autophagy等等)。蛋白質泛素化裂解的一個最重要的作用就是幫助細胞迅速適應新挑戰和變化,比如DNA傷害,細胞周期變化和各種stress。我們一直在關注蛋白質裂解在這些方面的貢獻,有一定的經驗和基礎,也將做篩選來確定其功能和影響。
3)蛋白質泛素化技術應用,發展新的治癌藥物和治療方法。我們已經在設計新方法把導致人體疾病的蛋白質快速降解,來開發其治療效應。
4)泛素化如何通過調控蛋白質的質量而可能參與老年神經性疾病的發展。我們在這方面已有一定的基礎,對多個有折疊錯誤而被裂解多蛋白有深刻的研究。
學術任職:
多個國際雜志的編委 包括 J. Biol. Chem.; Frontiers in Cell and Developmental Biology and Oncology; Adv. In Biol.,; J. Membrane Sci. Tech.
在德克薩斯大學擔任各級院校研究生及教授委員會委員
發表論文:
1. Rao, H., Mohr, S.C., Fairhead, H. and Setlow, P. (1992) Synthesis and characterization of a 29-amino acid residue DNA-binding peptide derived from a/b-type small acid soluble spore proteins (SASP) of bacteria. FEBS Ltr. 305: 115-120.
2. Bell, S.P., Marhrens, Y., Rao, H. and Stillman, B. (1993) The replicon model and eukaryotic chromosomes. Cold Spring Harbor Symp. Quant. Biol. 58: 435-442.
3. Rao, H., Marhrens, Y. and Stillman, B. (1994) Functional conservation of modular elements in yeast chromosomal replicators. Mol. Cell. Biol. 14: 7643-7651.
4. Rao, H. and Stillman, B. (1995) The origin recognition complex (ORC) interacts with a bipartite DNA binding site within yeast replicators. Proc. Natl. Acad. Sci. USA 92: 2224-2228.
5. Rao, H., Uhlmann, F., Nasmyth, K. and Varshavsky, A. (2001) Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410: 955-959.
6. Rao, H.* and Sastry, A. (2002) Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the UBA domain proteins Dsk2 and Rad23. J. Biol. Chem. 277: 11691-11695.
7. Kim, I., Mi, K. and Rao, H. (2004) Multiple interactions of Rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell. 15: 3357-3365. PMCID: PMC452589
8. Apodaca, J., Ahn, J.M., Kim, I. and Rao, H. (2005) Analysis of Ub-binding proteins by yeast two-hybrid. Methods Enzymol. 399: 157-64.
9. Kim, I., Ahn, J., Liu, C., Tanabe, K., Apodaca, J., Suzuki, T. and Rao H. (2006) The Png1-Rad23 complex regulates glycoprotein turnover. J. Cell Biol. 172: 211-219.
10. Kim, I. and Rao, H. (2006) What’s Ub chain linkage got to do with it? Science STKE 330: pe18.
11. Apodaca, J., Kim, I. and Rao, H. (2006) Cellular tolerance of prion in yeast requires the unfolded protein response and proteolysis. Biochem. Biophys. Res. Commun. 347: 319-326.
12. Liu, C., Apodaca, J., Davis, L.E. and Rao, H. (2007) Proteasome inhibition in wild-type yeast Saccharomyces cerevisiae cells. Biotechniques 42: 158-162.
13. Liu, C., van Dyk, D., Li, Y., Andrews, B. and Rao, H. (2009) A genome-wide synthetic dosage lethality screen reveals multiple pathways that require the functioning of Ub-binding proteins Rad23 and Dsk2. BMC Biol. 7: 75. PMCID: PMC 2777868
14. Kim, I., Li, Y., Muniz, P. and Rao, H. (2009) Usa1 protein facilitates substrate ubiquitylation through two separate domains. PLos One 4: e7604. PMCID: PMC2764048
15. Li, Y., Yan, J., Kim, I., Liu, C., Huo, K. and Rao, H. (2010) Rad4 regulates protein turnover at a postubiquitylation step. Mol. Biol. Cell. 21: 177-185. PMCID: PMC2801711
16. Kim, I., and Rao, H. (2010) Degradation of misfolded secretory and membrane proteins and associated diseases. eLS doi 10.1002/9780470015902.a0022577
17. Liu, C., van Dyk, D., Xu, P., Choe, V., Pan, H., Peng, J., Andrews, B. and Rao, H. (2010) Ubiquitin chain elongation enzyme Ufd2 regulates a subset of Doa10 substrates. J. Biol. Chem. 285: 10265-10272. PMCID: PMC 2856231
18. Hosomi, A., Tanabe, K., Hiryama, H., Kim, I., Rao, H. and Suzuki, T. (2010) Identification of an Htm1 (EDEM)- dependent, Mns1-independent Endoplasmic Reticulum-associated Degradation (ERAD) pathway in Saccharomyces cerevisiae: application of a novel assay for glycoprotein ERAD. J. Biol. Chem. 285: 24324-24334. PMCID: PMC2915668
19. Liu, C., Choe, V. and Rao, H. (2010) Genome-wide approaches to systematically identify substrates of the ubiquitin-proteasome pathway. Trends Biotechnol. 28: 461-467. PMCID: PMC 2926183
20. Yan, J., Zhang, D., Di, Y., Shi, H., Rao, H. and Huo, K. (2010) A newly identified Pirh2 substrate SCYL-1-BP1 can bind to MDM2 and accelerate MDM2 self-ubiquitination. FEBS Lett. 584: 3275-3278. PMCID: PMC3798065
21. Yan, J., Di, Y., Shi, H., Rao, H. and Huo K. (2010) Overexpression of SCYL1-BP1 stabilizes functional p53 suppressing MDM2-mediated ubiquitination. FEBS Lett. 584: 4319-4324.
22. Baek, G.H., Kim, I., and Rao, H. (2011) The Cdc48 ATPase modulates the interaction between two proteolytic factors Ufd2 and Rad23. PNAS 108:13558-63. PMCID: PMC3158229
23. Liu, C., van Dyk, D., Choe, V., Yan, J., Majumder, S., Costanzo, M., Bao, B., Boone, C., Huo, K. Winey, M., Fisk, H., Andrews, B. and Rao, H. (2011) Ubiquitin ligase Ufd2 is required for efficient degradation of Mps1 kinase. J. Biol. Chem 286: 43660-43667. PMCID: PMC3243506
24. Baek, G.H., Cheng, H., Kim, I., and Rao, H. (2012) The Cdc48 and its cofactor Vms1 are involved in Cdc13 protein degradation. J. Biol. Chem 287: 26788-26795. PMCID: PMC3411016
25. Baek, G.H., Cheng, H., Choe, V., Bao, X., Shao, J., Luo, S., and Rao, H. (2013). Cdc48, a swiss army knife of cell biology. J. Amino Acids 2013, doi 10.1155/2013/183421.
26. Krzeszinski, J., Choe, V., Shao, J., Bao, X., Cheng, H., Luo, S., Huo, K., and Rao, H. (2014) XPC promotes MDM2-mediated degradation of the p53 tumor suppressor. Mol. Biol. Cell. 25, 213-221.
27. Shao, J., Choe, V., Cheng, H., Tsai, C., Weissman, A., Luo , S. Rao, H. (2014) Ubiquitin ligase gp78 targets unglycosylated prion PrP for ubiquitylation and degradation. PLos One e92290.
28. Chen, Q., Xu, R., Zeng, C., Lu, Q., Huang, D, Shi, C., Yan, R., Zhang, W., Deng, L., Rao, H., Gao, G., Luo, S. (2014) Down-regulation of Gli transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin β4-mediated FAK signaling. PLos One e88386.
29. Xiong, X., Wang, Y., Liu, C., Lu, Q., Liu, T. Chen, G., Rao, H., Luo, S. (2014) Heat shock protein 90 beta stabilizes Focal Adhesion Kinase and enhances cell migration and invasion in breast cancer cells. Exp. Cell Res. 326: 78-89.
30. Bao, X., Johnson, J., and Rao, H. (2015) Rad25 protein is targeted for degradation by the Ubc4-Ufd4 pathway. J. Biol. Chem 290, 8606-8612. PMCID: PMC4375509
31. Tang, X., Deng, L., Chen, Q, Wang, Y., Xu, R., Shi, C., Shao, J., Hu, G., Gao, M., Rao, H., Luo, S., Lu, Q. (2015) Inhibition of Hedgehog signaling pathway impedes cancer cell proliferation by promotion of autophagy. Euro. J. Cell Biol., 94:223-233.
32. Klionsky, A. et al. (2016) Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy Autophagy 12, 1-222. PMID: 26799652
33. Cheng, H., Bao, X., and Rao, H (2016) The F box protein Rcy1 is involved in the degradation of Histone variant Cse4 and genome maintenance. J. Biol. Chem 291: 10372-10377.
34. Wang Y, Li Y, Hu G, Huang X, Rao H, Xiong X, Luo Z, Lu Q, Luo S. (2016) Nek2A phosphorylates and stabilizes SuFu: A new strategy of Gli2/Hedgehog signaling regulatory mechanism. Cellular signaling 28:1304-13. PMID: 27297360.
35. Zhou F, Huang D, Li Y, Hu G, Rao H, Lu Q, Luo S, Wang Y. (2017) Nek2A/SuFu feedback loop regulates Gli- mediated Hedgehog signaling pathway. Int J Oncol. 50, 373-380.
36. Shao J., Xu L., Chen L., Lu Q., Xie X., Shi W., Xiong W., Shi C., Huang X., Mei J., Rao H, Lu H., Lu N., Luo S. (2017) The small G-protein Arl13b promotes gastric tumorigenesis by regulating Smoothened trafficking and subsequent Hedgehog signaling pathway activation. Cancer Research 77: 4000-4013. PMID: 28611043
37. Peng H, Yang J, Li G, You Q, Han W, Li T, Gao D, Xie X, Lee BH, Du J, Hou J, Zhang T, Rao H, Huang Y, Li Q, Zeng R, Hui L, Wang H, Xia Q, Zhang X, He Y, Komatsu M, Dikic I, Finley D, Hu R. (2017) Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress. Cell Res. 27: 657-674. PMID: 28322253
38. Cheng, H., Bao, X., Gan, X., Luo, S. and Rao, H (2017) Multiple E3s promote the degradation of Histone variant Cse4. Scientific Reports 7: 8565. PMID: 28819127
39. Hu, G., Luo, S., Cheng, H., Gan, X., and Rao, H (2018) A simple PCR-based strategy for the introduction of point mutations in the yeast S. cerevisiae via CRISPR/CAS9. Biochem Mol Biol J. 4: 9. DOI: 10.21767/2471-8084.100058
40. Shanmugasundarum, K., McHardy, S., Luo, T., and Rao, H. (2019) A modular PROTAC design for target destruction using a degradation signal based on single amino acids. J. Biol. Chem 294: 15172
41. Yan, Z., Luo, S and Rao, H. (2020) The N-terminal domain of ABL confers protein instability and supresses tumorigenesis. J. Biol. Chem 295: 10.1074/jbc.RA120.012821
42. Hu, G., Yan, Z., Rios, L., Jasper A., Luo, S. and Rao, H. (2020) Autophagy regulator Atg9 is degraded by the proteasome. Biochem. Biophys. Res. Commun. 522: 254-8.
43. Che, J., X. Hong and H. Rao (2021). "PCNA Ubiquitylation: Instructive or Permissive to DNA Damage Tolerance Pathways?" Biomolecules 11(10).
44. Zhang, J., X. Fan, L. Liao, Y. Zhu, X. Wan, H. Rao and L. Chen (2022). "TRIM28 attenuates Bortezomib sensitivity of hepatocellular carcinoma cells through enhanced proteasome expression." Clin Transl Med 12(1): e603.
45. Rao, H., J. Che, C. Yin, Y. Zhou, Y. Ma and R. Tian (2022). "How many authors does it take to publish a high profile or classic paper?" Mol Biol Cell 33(12): pe6.