ag视讯打不开-AG全讯网puma

師資

EN       返回上一級       師資搜索
孔良
研究員

基本信息

姓名:孔良

職稱:研究員

郵 箱:[email protected]

研究領域:數學物理 (拓撲量子場論、2維共形場論、范疇學、表示論、拓撲物質態)


教育背景

2005.10 博士(數學)Rutgers, the State University of New Jersey

1997.5  碩士(物理學)美國休斯頓大學

1994.7  學士(物理學)中國科學技術大學


工作經歷

2018.9- 至今      深圳量子科學與工程研究院,南方科技大學

2017.9-2018.8    北京清華大學丘成桐數學科學中心 (副教授)

2015.7-2016.6    美國哈佛大學數學科學中心 (Research Associate)

2012.9-2017.5    美國University of New Hampshire (講師)

2009.9--2015.7   北京清華大學高等研究院:副研究員

2005.9--2009.8   德國馬普數學研究所(萊比錫、波恩)、法國高等研究院(IHES), 美國加州理工學院 (博士后)


論文與專利

1.   Open-string vertex algebras, categories and operads, Yi-Zhi Huang, Liang Kong, Comm. Math. Phys. 250 (2004) 433–471, [arXiv:math/0308248]

2.   Full field algebras, Yi-Zhi Huang, Liang Kong, Comm. Math. Phys. 272 (2007) 345–396, [arXiv:math/0511328]

3.   Full field algebras, operads and tensor categories, Liang Kong, Adv. Math. 213 (2007) 271–340, [arXiv:math/0603065]

4.   Modular invariance for conformal full field algebras, Yi-Zhi Huang, Liang Kong, Trans. Amer. Math. Soc. 362 (2010) 3027–3067, [arXiv:math.QA/0609570]

5.   Open-closed field algebras, Liang Kong, Comm. Math. Phys., 280, 207-261 (2008) [arXiv:math.QA/0610293]

6.   Cardy condition for open-closed field algebras, Liang Kong, Comm. Math. Phys. 283, 25–92 (2008) [arXiv:math/0612255]

7.    Morita classes of algebras in modular tensor categories, Liang Kong, Ingo Runkel, Adv. Math. 219, 1548–1576 (2008) [arXiv:0708.1897]

8.    Cardy algebras and sewing constraints, I, Liang Kong, Ingo Runkel, Comm. Math. Phys. 292, 871–912 (2009) [arXiv:0807.3356]

9.    Algebraic structures in Euclidean and Minkowskian two-dimensional conformal field theory, Liang Kong, Ingo Runkel, Noncommutative structures in Mathematics and Physics, 217–238, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2010, [arXiv:0902.3829]

10.  Field theories with defects and the centre functor, Alexei Davydov, Liang Kong, Ingo Runkel, Mathematical Foundations of Quantum Field and Perturbative String Theory, Hisham Sati, Urs Schreiber (eds.), Proceedings of Symposia in Pure Mathematics, AMS Vol. 83 (2011) 71–128 [arXiv:1107.0495]

11.  Conformal field theory and a new geometry, Liang Kong, Mathematical Foundations of Quantum Field and Perturbative String Theory, Hisham Sati, Urs Schreiber (eds.), Proceedings of Symposia in Pure Mathematics, AMS, Vol. 83 (2011) 199–244 [arXiv:1107.3649]

12.   Invertible defects and isomorphisms of rational CFTs, Alexei Davydov, Liang Kong, Ingo Runkel, Adv. Theor. Math. Phys., 15, (2011) 43–69 [arXiv:1004.4725]

13.   Models for gapped boundaries and domain walls, Alexei Kitaev, Liang Kong, Comm. Math. Phys. 313 (2012) 351-373 [arXiv:1104.5047]

14.   Electric-magnetic duality and topological order on the lattice, Oliver Buerschaper, Matthias Christandl, Liang Kong, Miguel Aguado, Nuclear Physics B. 876 [FS] (2013) 619-636 [arXiv:1006.5823]

15.   Some universal properties of Levin-Wen models, Liang Kong, XVIITH International Congress of Mathematical Physics, World Scientific 444-455 (2014) [arXiv:1211.4644]

16.   Cardy algebras and sewing constraints, II, Liang Kong, Qin Li, Ingo Runkel, Adv. Math. 262 (2014) 604-681 [arXiv:1310.1875]

17.   Anyon condensation and tensor categories, Liang Kong, Nucl. Phys. B 886 (2014)436-482 [arXiv:1307.8244]

18.   The functoriality of the centre of an algebra, Alexei Davydov, Liang Kong, Ingo Runkel, Adv. Math. 285 (2015) 811-876 [arXiv:1307.5956]

19.  Modular extensions of unitary braided fusion categories and 2+1D topological/SPT orders with symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Comm. Math. Phys. 351 (2017) 709-739 [arXiv:1602.05936]

20.   A theory of 2+1D fermionic topological orders and fermionic/bosonic topological orders with symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. B 94, 155113 (2016) [arXiv:1602.05936]

21.   Classification of 2+1D topological orders and SPT orders for bosonic and fermionic systems with on-site symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. B 95, 235140 (2017) [arXiv:1602.05936]

22.    Boundary-bulk relation in topological orders, Liang Kong, Xiao-Gang Wen, Hao Zheng, Nucl. Phys. B 922 (2017), 62-76 [arXiv:1702.00673]

23.    Drinfeld center of enriched monoidal categories, Liang Kong, Hao Zheng, Adv. Math. 323 (2018) 411-426 [arXiv:1704.01447]

24.    Gapless edges of 2d topological orders and enriched monoidal categories, Liang Kong, Hao Zheng, Nucl. Phys. B 927 (2018) 140-165 [arXiv:1705.01087]

25.    Topological orders and factorization homology, Yinghua Ai, Liang Kong, Hao Zheng, Adv. Theor. Math. Phys. Vol. 21, Number 8, (2017) 1845-1894 [arXiv:1607.08422]

26.    A classification of 3+1D bosonic topological orders (I): the case when point-like excitations are all bosons, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. X 8, 021074, (2018) [arXiv:1704.04221]

27.    The center functor is fully faithful, Liang Kong, Hao Zheng, accepted by Adv. Math. [arXiv:1507.00503]


凤阳县| 威尼斯人娱乐网站安全吗| 百家乐官网德州扑克桌布| 百家乐官网庄闲筹码| 百家乐赌博分析网| 唐人街百家乐的玩法技巧和规则| 百家乐官网为什么庄5| 百家乐破解方法技巧| 大名县| 百家乐追号软件| 属狗人做生意店铺朝向| 百家乐官网在线投注系统| 大发888 下载| 百家乐博彩策略| 海立方百家乐官网的玩法技巧和规则 | 百家乐官网能作弊吗| 大发888下载英皇国际| 百家乐官网出老千视频| 利博| 大发888娱乐官方| 网上百家乐赌博出| 百家乐官网又称为什么| 百家乐官网赌场高手| 错那县| 淘金盈国际线上娱乐| 德州扑克起手牌| 大发888casino| 威尼斯人娱乐城备用地址| 百家乐官网筹码皇冠| 蓝盾百家乐官网娱乐场开户注册| 荃湾区| 明珠网上娱乐| 新葡京娱乐城网站| 大发888 的用户名| 澳门百家乐路单| 哪家百家乐优惠最好且信誉不错| 百家乐八卦九| 免佣百家乐规则| 百家乐反缆公式| 太原百家乐的玩法技巧和规则| 乐天堂百家乐娱乐城|