ag视讯打不开-AG全讯网puma

師資

EN       返回上一級       師資搜索
孔良
研究員
kongl@sustc.edu.cn

基本信息

姓名:孔良

職稱:研究員

郵 箱:kongl@sustc.edu.cn

研究領域:數學物理 (拓撲量子場論、2維共形場論、范疇學、表示論、拓撲物質態)


教育背景

2005.10 博士(數學)Rutgers, the State University of New Jersey

1997.5  碩士(物理學)美國休斯頓大學

1994.7  學士(物理學)中國科學技術大學


工作經歷

2018.9- 至今      深圳量子科學與工程研究院,南方科技大學

2017.9-2018.8    北京清華大學丘成桐數學科學中心 (副教授)

2015.7-2016.6    美國哈佛大學數學科學中心 (Research Associate)

2012.9-2017.5    美國University of New Hampshire (講師)

2009.9--2015.7   北京清華大學高等研究院:副研究員

2005.9--2009.8   德國馬普數學研究所(萊比錫、波恩)、法國高等研究院(IHES), 美國加州理工學院 (博士后)


論文與專利

1.   Open-string vertex algebras, categories and operads, Yi-Zhi Huang, Liang Kong, Comm. Math. Phys. 250 (2004) 433–471, [arXiv:math/0308248]

2.   Full field algebras, Yi-Zhi Huang, Liang Kong, Comm. Math. Phys. 272 (2007) 345–396, [arXiv:math/0511328]

3.   Full field algebras, operads and tensor categories, Liang Kong, Adv. Math. 213 (2007) 271–340, [arXiv:math/0603065]

4.   Modular invariance for conformal full field algebras, Yi-Zhi Huang, Liang Kong, Trans. Amer. Math. Soc. 362 (2010) 3027–3067, [arXiv:math.QA/0609570]

5.   Open-closed field algebras, Liang Kong, Comm. Math. Phys., 280, 207-261 (2008) [arXiv:math.QA/0610293]

6.   Cardy condition for open-closed field algebras, Liang Kong, Comm. Math. Phys. 283, 25–92 (2008) [arXiv:math/0612255]

7.    Morita classes of algebras in modular tensor categories, Liang Kong, Ingo Runkel, Adv. Math. 219, 1548–1576 (2008) [arXiv:0708.1897]

8.    Cardy algebras and sewing constraints, I, Liang Kong, Ingo Runkel, Comm. Math. Phys. 292, 871–912 (2009) [arXiv:0807.3356]

9.    Algebraic structures in Euclidean and Minkowskian two-dimensional conformal field theory, Liang Kong, Ingo Runkel, Noncommutative structures in Mathematics and Physics, 217–238, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2010, [arXiv:0902.3829]

10.  Field theories with defects and the centre functor, Alexei Davydov, Liang Kong, Ingo Runkel, Mathematical Foundations of Quantum Field and Perturbative String Theory, Hisham Sati, Urs Schreiber (eds.), Proceedings of Symposia in Pure Mathematics, AMS Vol. 83 (2011) 71–128 [arXiv:1107.0495]

11.  Conformal field theory and a new geometry, Liang Kong, Mathematical Foundations of Quantum Field and Perturbative String Theory, Hisham Sati, Urs Schreiber (eds.), Proceedings of Symposia in Pure Mathematics, AMS, Vol. 83 (2011) 199–244 [arXiv:1107.3649]

12.   Invertible defects and isomorphisms of rational CFTs, Alexei Davydov, Liang Kong, Ingo Runkel, Adv. Theor. Math. Phys., 15, (2011) 43–69 [arXiv:1004.4725]

13.   Models for gapped boundaries and domain walls, Alexei Kitaev, Liang Kong, Comm. Math. Phys. 313 (2012) 351-373 [arXiv:1104.5047]

14.   Electric-magnetic duality and topological order on the lattice, Oliver Buerschaper, Matthias Christandl, Liang Kong, Miguel Aguado, Nuclear Physics B. 876 [FS] (2013) 619-636 [arXiv:1006.5823]

15.   Some universal properties of Levin-Wen models, Liang Kong, XVIITH International Congress of Mathematical Physics, World Scientific 444-455 (2014) [arXiv:1211.4644]

16.   Cardy algebras and sewing constraints, II, Liang Kong, Qin Li, Ingo Runkel, Adv. Math. 262 (2014) 604-681 [arXiv:1310.1875]

17.   Anyon condensation and tensor categories, Liang Kong, Nucl. Phys. B 886 (2014)436-482 [arXiv:1307.8244]

18.   The functoriality of the centre of an algebra, Alexei Davydov, Liang Kong, Ingo Runkel, Adv. Math. 285 (2015) 811-876 [arXiv:1307.5956]

19.  Modular extensions of unitary braided fusion categories and 2+1D topological/SPT orders with symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Comm. Math. Phys. 351 (2017) 709-739 [arXiv:1602.05936]

20.   A theory of 2+1D fermionic topological orders and fermionic/bosonic topological orders with symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. B 94, 155113 (2016) [arXiv:1602.05936]

21.   Classification of 2+1D topological orders and SPT orders for bosonic and fermionic systems with on-site symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. B 95, 235140 (2017) [arXiv:1602.05936]

22.    Boundary-bulk relation in topological orders, Liang Kong, Xiao-Gang Wen, Hao Zheng, Nucl. Phys. B 922 (2017), 62-76 [arXiv:1702.00673]

23.    Drinfeld center of enriched monoidal categories, Liang Kong, Hao Zheng, Adv. Math. 323 (2018) 411-426 [arXiv:1704.01447]

24.    Gapless edges of 2d topological orders and enriched monoidal categories, Liang Kong, Hao Zheng, Nucl. Phys. B 927 (2018) 140-165 [arXiv:1705.01087]

25.    Topological orders and factorization homology, Yinghua Ai, Liang Kong, Hao Zheng, Adv. Theor. Math. Phys. Vol. 21, Number 8, (2017) 1845-1894 [arXiv:1607.08422]

26.    A classification of 3+1D bosonic topological orders (I): the case when point-like excitations are all bosons, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. X 8, 021074, (2018) [arXiv:1704.04221]

27.    The center functor is fully faithful, Liang Kong, Hao Zheng, accepted by Adv. Math. [arXiv:1507.00503]


百家乐园千术大全| 游戏机百家乐官网的玩法技巧和规则 | 百家乐全讯网娱乐城| 灵石县| 博九百家乐的玩法技巧和规则| 朝阳市| 狮威百家乐娱乐场| 百家乐官网娱乐网会员注册| 皇冠足球比分网| 百家乐号游戏机| 百家乐官网刷钱| 南陵县| 澳门百家乐必赢技巧| 百家乐官网和21点| 浑源县| 百家乐官网黄金城游戏大厅| 石柱| 吴桥县| 青岛棋牌英雄| 百家乐平的概率| 百家乐官网科学打法| 无棣县| 德州扑克在线玩| 百家乐庄闲符号记| 风水24山组成| 百家乐官网赌经| 机器百家乐作弊| 风水24山代表什么意思| 赌博百家乐官网玩法| 壹贰博娱乐城| 凱旋門百家乐官网娱乐城| 百家乐官网转盘技巧| 太阳城娱乐网址| 百家乐园36bol在线| 做生意风水关键吗| 百家乐官网强对弱的对打法| 百家乐官网规则博彩正网| 金傲皇冠网论坛| 金盛娱乐| 大发8880634| 足球博彩网站|