ag视讯打不开-AG全讯网puma

師資

EN       返回上一級       師資搜索
高科
副教授
gaok@sustech.edu.cn

年博士畢業于加拿大多倫多大學巖石力學專業,年至年在美國國家實驗室固體地球物理方向從事博士后研究,年月加入南方科技大學地球與空間科學系,入選國家海外高層次人才計劃青年項目。主要研究領域為巖石力學和斷層力學,具體包括基于Combined finite-discrete element method, FDEM基于FDEM的熱-流-固(THM)多物理場作用下巖石復雜破裂機理研究及水力壓裂、基于張量的巖石應力變異性()和異質性()統計方法與巖石應力場模擬反演研究、模擬與試驗、基于機器學習的實驗室地震預測與斷層摩擦機理研究Physical Review Letters(編輯推薦文章)Geophysical Research LettersJournal of Geophysical Research: Solid EarthInternational Journal of Rock Mechanics and Mining ScienceRock Mechanics and Rock Engineering30余<span microsoft="" yahei";"="" yahei";="" line-height:="" 2;"="" line-height:2;"="" style="text-wrap: wrap; line-height: 2; font-family: Arial;">篇,主持國家自然科學基金面上項目、科技部重點研發專題、廣東省面上、深圳市面上等多個科研項目。

 

教育與工作經歷

2021 – 至今,副教授,南方科技大學,地球與空間科學系

2019 – 2020,助理教授,南方科技大學,地球與空間科學系

2017 – 2019,博士后,美國Los Alamos國家實驗室,固體地球物理

2012 – 2017,博士,加拿大多倫多大學,巖石力學與巖石工程


榮譽獎項

2021年,深圳市“孔雀計劃”B類人才

2020年,國家海外高層次人才計劃(青年)

2016年,第七屆國際地應力會議最佳論文獎

 

學術兼職

美國巖石力學協會(American Rock Mechanics Association)

美國地球物理協會(American Geophysics Union)

國際巖石力學協會(International Society for Rock Mechanics)

美國地震協會(Society of American Seismology)

加拿大巖土工程協會(Canadian Geotechnical Society)

美國土木工程師協會(American Society of Civil Engineer)

 

研究領域

巖石力學:

  1. 基于有限元和離散元耦合方法(Combined finite-discrete element method, FDEM)的巖石多物理場、多尺度耦合、并行算法開發

  2. 基于FDEM的熱-流-固(THM)多物理場作用下巖石復雜破裂機理、水力壓裂研究

  3. 基于張量的巖石應力變異性和異質性統計方法與巖石應力場模擬反演

斷層力學:

  1. 實驗室尺度的斷層剪切黏滑試驗和數值模擬

  2. 基于機器學習的實驗室地震預測與斷層摩擦機理研究

 

常年招聘博士后、博士生、碩士研究生及訪問學生,歡迎具有固體地球物理學、巖石力學、地質工程、巖土工程、計算力學、物理學、統計學等(但不限于)相關背景的同學來信咨詢或建立合作。


期刊論文 (*通訊作者, 課題組成員)

37. Cai, W., Gao, K.*, Ai, S., & Zhi, S. (2023). A 2D energy-conserving contact model for the combined finite-discrete element method (FDEM). Computers and Geotechnics, 166, 105972. doi:10.1016/j.compgeo.2023.105972. [PDF]

36. Feng, Y., Gao, K.*, & Lacasse, S. (2023). Bayesian partial pooling to reduce uncertainty in overcoring rock stress estimation. Journal of Rock Mechanics and Geotechnical Engineering. doi:10.1016/j.jrmge.2023.05.003. [PDF]

35. Cai, W., Gao, K.*, Ai, S., Wang, M., & Feng, Y. T. (2023). Implementation of extrinsic cohesive zone model (ECZM) in 2D finite-discrete element method (FDEM) using node binding scheme. Computers and Geotechnics, 159, 105470. doi:10.1016/j.compgeo.2023.105470. [PDF]

34. Ai, S.-G., & Gao, K.* (2023). Elastoplastic Damage Modeling of Rock Spalling/Failure Induced by a Filled Flaw Using the Material Point Method (MPM). Rock Mechanics and Rock Engineering. doi:10.1007/s00603-023-03265-8. [PDF]

33. Zhang, Y., Gao, K.*, & Li, C. (2023). Two slip regimes in sheared granular fault. Earth and Planetary Science Letters, 608, 118086. doi:10.1016/j.epsl.2023.118086. [PDF]

32. Cai, W., Gao, K.*, Wu, S., & Long, W. (2023). Moment Tensor-Based Approach for Acoustic Emission Simulation in Brittle Rocks Using Combined Finite-Discrete Element Method (FDEM). Rock Mechanics and Rock Engineering. doi:10.1007/s00603-023-03261-y. [PDF]

31. Mei, J., Ma, G., Tang, L., Gao, K., Cao, W., & Zhou, W. (2023). Spatial clustering of microscopic dynamics governs the slip avalanche of sheared granular materials. International Journal of Plasticity. doi:10.1016/j.ijplas.2023.103570. [PDF]

30. Feng, Y.*, Mignan, A., Sornette, D., & Gao, K. (2022). Investigating Injection Pressure as a Predictor to Enhance Real‐Time Forecasting of Fluid‐Induced Seismicity: A Bayesian Model Comparison. Seismological Research Letters. doi:10.1785/0220220309.

29. Li, X., Gao, K.*, Feng, Y., & Zhang, C. (2022). 3D geomechanical modeling of the Xianshuihe fault zone, SE Tibetan Plateau: Implications for seismic hazard assessment. Tectonophysics, 839, 229546. doi:10.1016/j.tecto.2022.229546. [PDF]

28. Cao, H., Apatay, E., Crane, G., Wu, B., Gao, K., & Askari, R. (2022). Evaluation of various data acquisition scenarios for the retrieval of seismic body waves from ambient noise seismic interferometry technique via numerical modeling. Geosciences, 12(7), 270. doi:10.3390/geosciences12070270. [PDF]

27. Wu, S., Gao, K.*, Wang, X., Ge, H., Zou, Y., & Zhang, X. (2022). Investigating the Propagation of Multiple Hydraulic Fractures in Shale Oil Rocks Using Acoustic Emission. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-022-02960-2. [PDF]

26. Yang, L., Wu, S., Gao, K., & Shen, L.* (2022). Simultaneous propagation of hydraulic fractures from multiple perforation clusters in layered tight reservoirs: Non-planar three-dimensional modelling. Energy, 254, 124483. doi:10.1016/j.energy.2022.124483. [PDF]

25. Wu, S., Gao, K.*, Feng, Y.*, & Huang, X. (2022). Influence of slip and permeability of bedding interface on hydraulic fracturing: A numerical study using combined finite-discrete element method. Computers and Geotechnics, 148, 104801. doi:10.1016/j.compgeo.2022.104801. [PDF]

24. Wu, S., Ge, H.*, Li, T., Wang, X., Li, N., Zou, Y., & Gao, K.* (2022). Characteristics of fractures stimulated by supercritical carbon dioxide fracturing in shale based on acoustic emission monitoring. International Journal of Rock Mechanics and Mining Sciences, 152, 105065. doi:10.1016/j.ijrmms.2022.105065. [PDF]

23. Ma, G., Mei, J.*, Gao, K., Zhao, J., Zhou, W. & Wang, D. (2022). Machine learning bridges microslips and slip avalanches of sheared granular gouges. Earth and Planetary Science Letters, 579, 117366. doi:10.1016/j.epsl.2022.117366. [PDF]

22. Cai, W., Li, Y.*, Gao, K.*, & Wang, K. (2021). Crack propagation mechanism in rock-like specimens containing intermittent flaws under shear loading. Theoretical and Applied Fracture Mechanics, 117, 103187. doi:10.1016/j.tafmec.2021.103187. [PDF]

21. Wu, M., Gao, K.*, Liu, J., Song, Z., & Huang, X.* (2021). Influence of rock heterogeneity on hydraulic fracturing: A parametric study using the combined finite-discrete element method. International Journal of Solids and Structures, 234-235, 111293. doi:10.1016/j.ijsolstr.2021.111293. [PDF]

20. Feng, Y., Gao, K.*, Mignan, A., & Li, J. (2021). Improving local mean stress estimation using Bayesian hierarchical modelling. International Journal of Rock Mechanics and Mining Sciences, 148, 104924. doi:10.1016/j.ijrmms.2021.104924. [PDF]

19. Wang, M., Gao, K., & Feng, Y.T.* (2021). An improved continuum-based finite–discrete element method with intra-element fracturing algorithm. Computer Methods in Applied Mechanics and Engineering, 384, 113978. doi:10.1016/j.cma.2021.113978. [PDF]

18. Ma, G.*, Zou, Y., Gao, K., Zhao, J., & Zhou, W. (2020). Size polydispersity tunes slip avalanches of granular gouge. Geophysical Research Letters, 47(23). doi:10.1029/2020GL090458. [PDF]

17. Gao, K.*, Guyer, R. A., Rougier, E., & Johnson, P. A. (2020). Plate motion in sheared granular fault system. Earth and Planetary Science Letters, 548, 116481. doi:10.1016/j.epsl.2020.116481. [PDF]

16. Knight, E. E.*, Rougier, E., Lei, Z., Euser, B., Chau, V., Boyce, S. H., Gao, K., Okubo, K., & Froment, M. (2020). HOSS: an implementation of the combined finite-discrete element method. Computational Particle Mechanics. doi:10.1007/s40571-020-00349-y. [PDF]

15. Chau, V.*, Rougier, E., Lei, Z., Knight, E.E., Gao, K., Hunter, A., Srinivasan, G., & Viswanathan, H. (2019). Numerical analysis of flyer plate experiments in granite via the combined finite–discrete element method. Computational Particle Mechanics. doi:10.1007/s40571-019-00300-w. [PDF]

14. Gao, K., Lei, Q.*, Bozorgzadeh, N, & Chau, V. T. (2019). Can we estimate far-field stress using the mean of local stresses? An examination based on numerical simulations. Computers and Geotechnics, 116, 103188. doi:10.1016/j.compgeo.2019.103188. [PDF]

13. Gao, K.*, Guyer, R. A., Rougier, E., Ren, C. X., & Johnson, P. A. (2019). From stress chains to acoustic emission. Physical Review Letters, 123(4), 048003. doi:10.1103/PhysRevLett.123.048003. [PDF]

12. Gao, K.*, Rougier, E., Guyer, R. A., Lei, Z, & Johnson, P. A. (2019). Simulation of crack induced nonlinear elasticity using the combined finite-discrete element method. Ultrasonics, 98, 51-61. doi:10.1016/j.ultras.2019.06.003. [PDF]

11. Gao, K.*, Bozorgzadeh, N., & Harrison, J. P. (2019). The equivalence of three shear?normal stress forms of the Hoek?Brown criterion. Rock Mechanics and Rock Engineering, 52, 3501-3507. doi:10.1007/s00603-019-01758-z. [PDF]

10. Lei, Q., & Gao, K.* (2019). A numerical study of stress variability in heterogeneous fractured rocks. International Journal of Rock Mechanics and Mining Sciences, 113, 121-133. doi:10.1016/j.ijrmms.2018.12.001. [PDF]

9.   Gao, K.*, & Harrison, J. P. (2019). Examination of mean stress calculation approaches in rock mechanics. Rock Mechanics and Rock Engineering. 52(1),83–95. doi:10.1007/s00603-018-1568-0. [PDF]

8.   Gao, K.*, Euser, B. J., Rougier, E., Guyer, R. A., Lei, Z., Knight, E. E., Carmeliet, J., & Johnson, P. A. (2018). Modeling of stick-slip behavior in sheared granular fault gouge using the combined finite?discrete element method. Journal of Geophysical Research: Solid Earth, 123,5774–5792. doi:10.1029/2018JB015668. [PDF]

7.   Gao, K.*, & Harrison, J. P. (2018). Re-examination of the in situ stress measurements on the 240 level of the AECL’s URL using tensor-based approaches. Rock Mechanics and Rock Engineering. 51(10), 3179–3188. doi:10.1007/s00603-018-1530-1. [PDF]

6.   Lei, Q.*, & Gao, K.* (2018). Correlation between fracture network properties and stress variability in geological media. Geophysical Research Letters, 45, 3994–4006. doi:10.1002/2018GL077548. [PDF]

5.   Gao, K., & Lei, Q.* (2018). Influence of boundary constraints on stress heterogeneity modelling. Computers and Geotechnics, 99, 130-136. doi:10.1016/j.compgeo.2018.03.003. [PDF]

4.   Gao, K.*, & Harrison, J. P. (2018). Scalar-valued measures of stress dispersion. International Journal of Rock Mechanics and Mining Sciences, 106, 234–242. doi:10.1016/j.ijrmms.2018.04.008. [PDF]

3.   Gao, K.*, & Harrison, J. P. (2018). Multivariate distribution model for stress variability characterisation. International Journal of Rock Mechanics and Mining Sciences, 102, 144-154. doi:10.1016/j.ijrmms.2018.01.004. [PDF]

2.   Gao, K.*, & Harrison, J. P. (2017). Generation of random stress tensors. International Journal of Rock Mechanics and Mining Sciences, 94, 18-26. doi:10.1016/j.ijrmms.2016.12.011. [PDF]

1.   Gao, K.*, & Harrison, J. P. (2016). Mean and dispersion of stress tensors using Euclidean and Riemannian approaches. International Journal of Rock Mechanics and Mining Sciences, 85, 165-173. doi:10.1016/j.ijrmms.2016.03.019. [PDF]


德州扑克哪个平台好| 利来网站| 大发888游戏平台黄埔| 娱乐城百家乐官网可以代理吗 | 全讯网3344555.com| 百家乐官网正规站| 百家乐筹码皇冠| 广发百家乐官网的玩法技巧和规则 | 百家乐官网桌子定制| 婺源县| 威尼斯人娱乐网注册网址| 新花园百家乐官网的玩法技巧和规则| 单机棋牌游戏| 百家乐庄闲庄庄闲| 百家乐路的看法| 百家乐官网足球投注网哪个平台网址测速最好| 大发888洗码| 澳门百家乐网上赌博| 凯时百家乐技巧| 澳门百家乐官网游戏皇冠网| 娱乐城开户送钱| 真人百家乐国际第一品牌| 怎么玩百家乐官网网上赌博| 海原县| 大发888官方备用| 百家乐博赌场娱乐网规则 | 网上百家| 威尼斯人娱乐中心老品牌| 百家乐游戏机的玩法| 一筒百家乐官网的玩法技巧和规则| 百家乐官网是片人的吗| 赛马会娱乐城| 金冠娱乐城开户| 金界百家乐的玩法技巧和规则| 任你博百家乐现金网| 24山向吉凶山运| 百家乐官网怎么玩啊| 360棋牌大厅| 怎么赢百家乐的玩法技巧和规则| 百家乐网投注| 网络百家乐破解平台|