ag视讯打不开-AG全讯网puma

師資

EN       返回上一級       師資搜索
高科
副教授

年博士畢業于加拿大多倫多大學巖石力學專業,年至年在美國國家實驗室固體地球物理方向從事博士后研究,年月加入南方科技大學地球與空間科學系,入選國家海外高層次人才計劃青年項目。主要研究領域為巖石力學和斷層力學,具體包括基于Combined finite-discrete element method, FDEM基于FDEM的熱-流-固(THM)多物理場作用下巖石復雜破裂機理研究及水力壓裂、基于張量的巖石應力變異性()和異質性()統計方法與巖石應力場模擬反演研究、模擬與試驗、基于機器學習的實驗室地震預測與斷層摩擦機理研究Physical Review Letters(編輯推薦文章)Geophysical Research LettersJournal of Geophysical Research: Solid EarthInternational Journal of Rock Mechanics and Mining ScienceRock Mechanics and Rock Engineering30余<span microsoft="" yahei";"="" yahei";="" line-height:="" 2;"="" line-height:2;"="" style="text-wrap: wrap; line-height: 2; font-family: Arial;">篇,主持國家自然科學基金面上項目、科技部重點研發專題、廣東省面上、深圳市面上等多個科研項目。

 

教育與工作經歷

2021 – 至今,副教授,南方科技大學,地球與空間科學系

2019 – 2020,助理教授,南方科技大學,地球與空間科學系

2017 – 2019,博士后,美國Los Alamos國家實驗室,固體地球物理

2012 – 2017,博士,加拿大多倫多大學,巖石力學與巖石工程


榮譽獎項

2021年,深圳市“孔雀計劃”B類人才

2020年,國家海外高層次人才計劃(青年)

2016年,第七屆國際地應力會議最佳論文獎

 

學術兼職

美國巖石力學協會(American Rock Mechanics Association)

美國地球物理協會(American Geophysics Union)

國際巖石力學協會(International Society for Rock Mechanics)

美國地震協會(Society of American Seismology)

加拿大巖土工程協會(Canadian Geotechnical Society)

美國土木工程師協會(American Society of Civil Engineer)

 

研究領域

巖石力學:

  1. 基于有限元和離散元耦合方法(Combined finite-discrete element method, FDEM)的巖石多物理場、多尺度耦合、并行算法開發

  2. 基于FDEM的熱-流-固(THM)多物理場作用下巖石復雜破裂機理、水力壓裂研究

  3. 基于張量的巖石應力變異性和異質性統計方法與巖石應力場模擬反演

斷層力學:

  1. 實驗室尺度的斷層剪切黏滑試驗和數值模擬

  2. 基于機器學習的實驗室地震預測與斷層摩擦機理研究

 

常年招聘博士后、博士生、碩士研究生及訪問學生,歡迎具有固體地球物理學、巖石力學、地質工程、巖土工程、計算力學、物理學、統計學等(但不限于)相關背景的同學來信咨詢或建立合作。


期刊論文 (*通訊作者, 課題組成員)

37. Cai, W., Gao, K.*, Ai, S., & Zhi, S. (2023). A 2D energy-conserving contact model for the combined finite-discrete element method (FDEM). Computers and Geotechnics, 166, 105972. doi:10.1016/j.compgeo.2023.105972. [PDF]

36. Feng, Y., Gao, K.*, & Lacasse, S. (2023). Bayesian partial pooling to reduce uncertainty in overcoring rock stress estimation. Journal of Rock Mechanics and Geotechnical Engineering. doi:10.1016/j.jrmge.2023.05.003. [PDF]

35. Cai, W., Gao, K.*, Ai, S., Wang, M., & Feng, Y. T. (2023). Implementation of extrinsic cohesive zone model (ECZM) in 2D finite-discrete element method (FDEM) using node binding scheme. Computers and Geotechnics, 159, 105470. doi:10.1016/j.compgeo.2023.105470. [PDF]

34. Ai, S.-G., & Gao, K.* (2023). Elastoplastic Damage Modeling of Rock Spalling/Failure Induced by a Filled Flaw Using the Material Point Method (MPM). Rock Mechanics and Rock Engineering. doi:10.1007/s00603-023-03265-8. [PDF]

33. Zhang, Y., Gao, K.*, & Li, C. (2023). Two slip regimes in sheared granular fault. Earth and Planetary Science Letters, 608, 118086. doi:10.1016/j.epsl.2023.118086. [PDF]

32. Cai, W., Gao, K.*, Wu, S., & Long, W. (2023). Moment Tensor-Based Approach for Acoustic Emission Simulation in Brittle Rocks Using Combined Finite-Discrete Element Method (FDEM). Rock Mechanics and Rock Engineering. doi:10.1007/s00603-023-03261-y. [PDF]

31. Mei, J., Ma, G., Tang, L., Gao, K., Cao, W., & Zhou, W. (2023). Spatial clustering of microscopic dynamics governs the slip avalanche of sheared granular materials. International Journal of Plasticity. doi:10.1016/j.ijplas.2023.103570. [PDF]

30. Feng, Y.*, Mignan, A., Sornette, D., & Gao, K. (2022). Investigating Injection Pressure as a Predictor to Enhance Real‐Time Forecasting of Fluid‐Induced Seismicity: A Bayesian Model Comparison. Seismological Research Letters. doi:10.1785/0220220309.

29. Li, X., Gao, K.*, Feng, Y., & Zhang, C. (2022). 3D geomechanical modeling of the Xianshuihe fault zone, SE Tibetan Plateau: Implications for seismic hazard assessment. Tectonophysics, 839, 229546. doi:10.1016/j.tecto.2022.229546. [PDF]

28. Cao, H., Apatay, E., Crane, G., Wu, B., Gao, K., & Askari, R. (2022). Evaluation of various data acquisition scenarios for the retrieval of seismic body waves from ambient noise seismic interferometry technique via numerical modeling. Geosciences, 12(7), 270. doi:10.3390/geosciences12070270. [PDF]

27. Wu, S., Gao, K.*, Wang, X., Ge, H., Zou, Y., & Zhang, X. (2022). Investigating the Propagation of Multiple Hydraulic Fractures in Shale Oil Rocks Using Acoustic Emission. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-022-02960-2. [PDF]

26. Yang, L., Wu, S., Gao, K., & Shen, L.* (2022). Simultaneous propagation of hydraulic fractures from multiple perforation clusters in layered tight reservoirs: Non-planar three-dimensional modelling. Energy, 254, 124483. doi:10.1016/j.energy.2022.124483. [PDF]

25. Wu, S., Gao, K.*, Feng, Y.*, & Huang, X. (2022). Influence of slip and permeability of bedding interface on hydraulic fracturing: A numerical study using combined finite-discrete element method. Computers and Geotechnics, 148, 104801. doi:10.1016/j.compgeo.2022.104801. [PDF]

24. Wu, S., Ge, H.*, Li, T., Wang, X., Li, N., Zou, Y., & Gao, K.* (2022). Characteristics of fractures stimulated by supercritical carbon dioxide fracturing in shale based on acoustic emission monitoring. International Journal of Rock Mechanics and Mining Sciences, 152, 105065. doi:10.1016/j.ijrmms.2022.105065. [PDF]

23. Ma, G., Mei, J.*, Gao, K., Zhao, J., Zhou, W. & Wang, D. (2022). Machine learning bridges microslips and slip avalanches of sheared granular gouges. Earth and Planetary Science Letters, 579, 117366. doi:10.1016/j.epsl.2022.117366. [PDF]

22. Cai, W., Li, Y.*, Gao, K.*, & Wang, K. (2021). Crack propagation mechanism in rock-like specimens containing intermittent flaws under shear loading. Theoretical and Applied Fracture Mechanics, 117, 103187. doi:10.1016/j.tafmec.2021.103187. [PDF]

21. Wu, M., Gao, K.*, Liu, J., Song, Z., & Huang, X.* (2021). Influence of rock heterogeneity on hydraulic fracturing: A parametric study using the combined finite-discrete element method. International Journal of Solids and Structures, 234-235, 111293. doi:10.1016/j.ijsolstr.2021.111293. [PDF]

20. Feng, Y., Gao, K.*, Mignan, A., & Li, J. (2021). Improving local mean stress estimation using Bayesian hierarchical modelling. International Journal of Rock Mechanics and Mining Sciences, 148, 104924. doi:10.1016/j.ijrmms.2021.104924. [PDF]

19. Wang, M., Gao, K., & Feng, Y.T.* (2021). An improved continuum-based finite–discrete element method with intra-element fracturing algorithm. Computer Methods in Applied Mechanics and Engineering, 384, 113978. doi:10.1016/j.cma.2021.113978. [PDF]

18. Ma, G.*, Zou, Y., Gao, K., Zhao, J., & Zhou, W. (2020). Size polydispersity tunes slip avalanches of granular gouge. Geophysical Research Letters, 47(23). doi:10.1029/2020GL090458. [PDF]

17. Gao, K.*, Guyer, R. A., Rougier, E., & Johnson, P. A. (2020). Plate motion in sheared granular fault system. Earth and Planetary Science Letters, 548, 116481. doi:10.1016/j.epsl.2020.116481. [PDF]

16. Knight, E. E.*, Rougier, E., Lei, Z., Euser, B., Chau, V., Boyce, S. H., Gao, K., Okubo, K., & Froment, M. (2020). HOSS: an implementation of the combined finite-discrete element method. Computational Particle Mechanics. doi:10.1007/s40571-020-00349-y. [PDF]

15. Chau, V.*, Rougier, E., Lei, Z., Knight, E.E., Gao, K., Hunter, A., Srinivasan, G., & Viswanathan, H. (2019). Numerical analysis of flyer plate experiments in granite via the combined finite–discrete element method. Computational Particle Mechanics. doi:10.1007/s40571-019-00300-w. [PDF]

14. Gao, K., Lei, Q.*, Bozorgzadeh, N, & Chau, V. T. (2019). Can we estimate far-field stress using the mean of local stresses? An examination based on numerical simulations. Computers and Geotechnics, 116, 103188. doi:10.1016/j.compgeo.2019.103188. [PDF]

13. Gao, K.*, Guyer, R. A., Rougier, E., Ren, C. X., & Johnson, P. A. (2019). From stress chains to acoustic emission. Physical Review Letters, 123(4), 048003. doi:10.1103/PhysRevLett.123.048003. [PDF]

12. Gao, K.*, Rougier, E., Guyer, R. A., Lei, Z, & Johnson, P. A. (2019). Simulation of crack induced nonlinear elasticity using the combined finite-discrete element method. Ultrasonics, 98, 51-61. doi:10.1016/j.ultras.2019.06.003. [PDF]

11. Gao, K.*, Bozorgzadeh, N., & Harrison, J. P. (2019). The equivalence of three shear?normal stress forms of the Hoek?Brown criterion. Rock Mechanics and Rock Engineering, 52, 3501-3507. doi:10.1007/s00603-019-01758-z. [PDF]

10. Lei, Q., & Gao, K.* (2019). A numerical study of stress variability in heterogeneous fractured rocks. International Journal of Rock Mechanics and Mining Sciences, 113, 121-133. doi:10.1016/j.ijrmms.2018.12.001. [PDF]

9.   Gao, K.*, & Harrison, J. P. (2019). Examination of mean stress calculation approaches in rock mechanics. Rock Mechanics and Rock Engineering. 52(1),83–95. doi:10.1007/s00603-018-1568-0. [PDF]

8.   Gao, K.*, Euser, B. J., Rougier, E., Guyer, R. A., Lei, Z., Knight, E. E., Carmeliet, J., & Johnson, P. A. (2018). Modeling of stick-slip behavior in sheared granular fault gouge using the combined finite?discrete element method. Journal of Geophysical Research: Solid Earth, 123,5774–5792. doi:10.1029/2018JB015668. [PDF]

7.   Gao, K.*, & Harrison, J. P. (2018). Re-examination of the in situ stress measurements on the 240 level of the AECL’s URL using tensor-based approaches. Rock Mechanics and Rock Engineering. 51(10), 3179–3188. doi:10.1007/s00603-018-1530-1. [PDF]

6.   Lei, Q.*, & Gao, K.* (2018). Correlation between fracture network properties and stress variability in geological media. Geophysical Research Letters, 45, 3994–4006. doi:10.1002/2018GL077548. [PDF]

5.   Gao, K., & Lei, Q.* (2018). Influence of boundary constraints on stress heterogeneity modelling. Computers and Geotechnics, 99, 130-136. doi:10.1016/j.compgeo.2018.03.003. [PDF]

4.   Gao, K.*, & Harrison, J. P. (2018). Scalar-valued measures of stress dispersion. International Journal of Rock Mechanics and Mining Sciences, 106, 234–242. doi:10.1016/j.ijrmms.2018.04.008. [PDF]

3.   Gao, K.*, & Harrison, J. P. (2018). Multivariate distribution model for stress variability characterisation. International Journal of Rock Mechanics and Mining Sciences, 102, 144-154. doi:10.1016/j.ijrmms.2018.01.004. [PDF]

2.   Gao, K.*, & Harrison, J. P. (2017). Generation of random stress tensors. International Journal of Rock Mechanics and Mining Sciences, 94, 18-26. doi:10.1016/j.ijrmms.2016.12.011. [PDF]

1.   Gao, K.*, & Harrison, J. P. (2016). Mean and dispersion of stress tensors using Euclidean and Riemannian approaches. International Journal of Rock Mechanics and Mining Sciences, 85, 165-173. doi:10.1016/j.ijrmms.2016.03.019. [PDF]


德州扑克单机游戏| 全迅网百家乐的玩法技巧和规则 | 太阳城百家乐官网怎么出千| 百家乐游戏介绍与分析| 缅甸百家乐官网论坛| 聚宝盆百家乐的玩法技巧和规则| 南宁百家乐官网的玩法技巧和规则 | 百家乐投注方法投资法| 网络百家乐官网怎样出千| 皇城百家乐娱乐城| 百家乐官网游戏软件开发| 百家乐制胜法| 互博百家乐官网的玩法技巧和规则 | 大发888娱乐场网页| 澳门百家乐鸿运| 百家乐官网连黑记录| 澳门百家乐赢钱公式不倒翁| 百家乐官网2号破解下载| 桐庐县| 真人百家乐平台排行| 电玩城百家乐官网技巧| 百家乐官网不倒翁注码| 百家乐赌场合作| 大赢家百家乐官网66| 大发888官方df888gwyxpt| 赌百家乐到底能赌博赢| 南京百家乐官网的玩法技巧和规则 | 百家乐官网视频游戏世界| 大东方娱乐城| 青岛棋牌英雄| 百家乐网投打法| 百家乐官网破解的办法| 立博网| 百家乐高手心得| 顶尖百家乐官网的玩法技巧和规则| 百家乐官网开户送彩金28| 博彩公司评级| 利来百家乐的玩法技巧和规则 | 亿乐棋牌游戏大厅| 犹太人百家乐的玩法技巧和规则 | 百家乐上海代理|