ag视讯打不开-AG全讯网puma

師資

EN       返回上一級       師資搜索
戴建生
講席教授
英國皇家工程院院士、歐洲科學院院士(Academia Europaea)
南科大機器人研究院院長

戴建生,英國皇家工程院院士(FREng),歐洲科學院院士(Academia Europaea), IEEE Fellow, ASME Fellow, RSA Fellow, IMechE Fellow,CAA Fellow。國際機器人旗艦期刊 Robotica Editor-in-Chief(主編),Mechanism and Machine Theory 方向主編,高等教育出版社“機器人科學與技術”叢書主編。長期從事理論運動學、機構學與機器人學的基礎理論與應用研究,在旋量代數、李群、李代數等領域具有深厚的數學基礎和造詣。在變胞機構、可重構機構與可重構機器人等各類機器人機構,以及這些機構在康復與制造技術領域應用上做出了許多開創性與國際領先的工作。2015年獲得 ASME “機構學與機器人學終身成就獎”,為該獎設立41年來第27位獲獎者。2020年獲得 ASME “機械設計終身成就獎”,為該獎設立 62年來第58位獲獎者。2020年獲獎詞:為建立可重構機構領域和變胞機構子領域做出了開拓性與奠基性貢獻;并通過研究、應用、教學和服務對機械設計產生了持久性影響,彌合了通用但昂貴的機器人與高效但不靈活的機器之間的鴻溝。


戴院士于2021年獲得天津市(省部級)自然科學一等獎(第一名)。除了2015年與2020年兩個終身成就獎外,戴院士還獲得了多項國內外學術獎勵與榮譽以及多項國際期刊最佳論文獎,包括“2018年 Crossley Award”等5項最佳期刊論文獎、“2019年 AT Yang Memorial Award”理論運動學獎等9項最佳會議論文獎、倫敦國王學院2010年度“博士指導卓越獎”(1人/3200人)、2012年 ASME 杰出服務獎、中國機構學學會2012年“學術創新獎”和“國際學術交流獎”等12項個人獎。

戴院士發表SCI論文400余篇,出版英文著作4部、中文著作6部含在高等教育出版社知名品牌系列“現代數學基礎”叢書中出版與再版的《旋量代數與李群、李代數》,在“機器人科學與技術”叢書中出版與再次印刷的《機構學與機器人學幾何基礎與旋量代數》以及獲國家科學技術學術著作出版基金資助出版的《可重構機構與可重構機器人》。
 
研究領域:
◆ 理論:理論運動學,旋量代數與李群、李代數,機構學與機構理論、
◆ 機構:變胞機構,可重構機構與可重構機器人
◆ 操作:機器人操作,機器人靈巧手
◆ 應用:康復機器人,服務機器人,足式機器人
◆ 制造:機器人與智能制造
 
學習經歷:
◆ 1989.06-1993.05    英國索爾福德大學,博士
◆ 1982.09-1985.03   上海交通大學,機械工程碩士
◆ 1978.09-1982.07   上海交通大學,機械工程學士
 
工作經歷:
◆ 2022.01-現在        南方科技大學機器人研究院院長
◆ 2022.01-現在        南方科技大學機械與能源工程系,講席教授
◆ 2007.09-2021.12   英國倫敦國王學院,講席教授
◆ 1999.09-2007.08   英國倫敦國王學院,準教授
◆ 1997.09-1999.08   英國桑德蘭大學,高級講師
◆ 1996.01-1997.08   英國聯合利華利物浦研究中心,研究員
◆ 1993.05-1995.12   英國索爾福德大學,博士后
 
學術兼職 :
◆ Robotica, Editor-in-Chief
◆ Mechanism and Machine Theory, Subject Editor
◆ ASME Transactions: Journal of Mechanical Design, Associate Editor
◆ Journal of Mechanical Engineering Sciences, Associate Editor
◆ IFToMM 英國區主席

所獲榮譽:
◆ 2023年,入選歐洲科學院院士(Academia Europaea)
◆ 2021年,入選英國皇家工程院院士
◆ 2021年,入選中國自動化學會會士(CAA Fellow)
◆ 2020年,獲得“ASME 機械設計終身成就獎”,1958年后第58位
◆ 2019年,獲得“AT Yang 理論運動學”獎
◆ 2018年,獲得“Crossley Award”獎
◆ 2017年,入選國際電子電氣工程師協會會士(IEEE Fellow)
◆ 2015年,獲得“ASME 機構學與機器人學終身成就獎”,1974年后第 27位
◆ 2013年,獲得“中國機構學創新獎”
◆ 2011年,入選美國機械工程師協會會士(ASME Fellow)
◆ 2011年,獲得“Best Paper Award”(1/182),Journal of Systems and Control Engineering
◆ 2010年,獲得“博士指導卓越獎”(1/3200),倫敦國王學院
◆ 2009年,獲得“SAGE Award”(1/178),Journal of Systems and Control Engineering
◆ 2007年,入選英國機械工程院會士(IMechE Fellow)
◆ 1998年,獲得 ASME 第25屆機構學雙年會最佳論文獎(1/182)
◆ 1995年,英國注冊(特許)工程師,歐洲注冊工程師

代表性論文:

著作:
◆E. Rodriguez-Leal and J.S. Dai, Evolutionary Design of Parallel Mechanisms: Kinematics of a Family of Parallel Mechanisms with Centralized Motion, Lambert Academic Publishing, Saarbruecken, Germany, 2010, ISBN: 3838378768.
◆C. Qiu and J.S. Dai, Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach, Springer, London, 2020, ISBN: 978-3-030-48312-8
◆L. Cui and J.S. Dai, Sliding-Rolling Contact & In-Hand Manipulation, World Scientific Publishing, London, 2020, ISBN:978-1-78634-842-5.
◆戴建生 著,《旋量代數與李群李代數》,“現代數學基礎”叢書第 42部,第70部,高等教育出版社,2014年第一版,2020年第二版(37萬字/375頁)。  
◆戴建生 著,《機構學與機器人學的幾何基礎與旋量代數》,“機器人科學與技術”叢書第1部,高等教育出版社,2014年第一版,2018年再次印刷(58萬字/488頁)。
◆戴建生,康熙 ,宋亞慶,魏俊 著,《可重構機構與可重構機器人 — 分岔演變的運動學分析、綜合及其控制》,由“國家科學技術學術著作出版基金”資助出版,高等教育出版社,2021年出版(64萬字/516頁)。
◆春松, 唐昭, 戴建生 著,《基于運動智能的機器人開發與控制》, “十四五”時期國家重點出版物出版專項規劃項目,高等教育出版社,2022年出版(26萬字/208頁)

理論:
◆L. Wu, and J.S. Dai, 2021, A novel ortho-triplex tensegrity derived by the linkage-truss transformation with prestress-stability analysis using screw theory, ASME J. Mech. Des., 143(1): 013302.
◆Z. Fu, J. Pan, E. Spyrakos-Papastavridis, Y. Lin, X. Zhou, X. Chen, and J.S. Dai, 2021, A Lie-theory-based dynamic parameter identification methodology for serial manipulators, IEEE-ASME Trans. Mech., 26(5): 2688-2699.
◆L. Wu, A. Muller, and J.S. Dai, 2020, A matrix method to determine infinitesimally mobile linkages with only first-order infinitesimal mobility, Mech. Mach. Theory, 148: 103776.
◆Z. Fu, J.S. Dai, K. Yang, X. Chen, and P. Lopez-Custodio, 2020, Analysis of unified error model and simulated parameters calibration for robotic machining based on Lie theory, Robot. Comput.-Integr. Manuf., 61: 101855.
◆J.S. Dai, and J. Sun, 2020, Geometrical revelation of correlated characteristics of the ray and axis order of the Plücker coordinates in line geometry, Mech. Mach. Theory, 153: 103983.
◆J. Wei, and J.S. Dai, 2019, Reconfiguration-aimed and manifold-operation based type synthesis of metamorphic parallel mechanisms with motion between 1R2T and 2R1T, Mech. Mach. Theory, 139: 66-80.
◆P. Lopez-Custodio, A. Muller, J. Rico, and J.S. Dai, 2019, A synthesis method for 1-DOF mechanisms with a cusp in the configuration space, Mech. Mach. Theory, 132: 154-175.
◆J.S. Dai, 2015, Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections, Mech. Mach. Theory, 92: 144-152.
◆J.S. Dai, 2012, Finite displacement screw operators with embedded Chasles' motion, ASME J. Mech. Robot., 4(4): 041002.
◆L. Cui, and J.S. Dai, 2010, A Darboux-frame-based formulation of spin-rolling motion of rigid objects with point contact, IEEE Trans. Robot., 26(2): 383-388.
◆J.S. Dai, Z. Huang, and H. Lipkin, 2006, Mobility of overconstrained parallel mechanisms, ASME J. Mech. Des., 128(1): 220-229.
◆J.S. Dai, 2006, An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist, Mech. Mach. Theory, 41(1): 41-52.
◆J.S. Dai, and J. Jones, 2002, Null-space construction using cofactors from a screw-algebra context, Proc. Royal Soc. Math. Phy. Eng. Sci., 458(2024): 1845-1866.
◆J.S. Dai, and J. Jones, 2001, Interrelationship between screw systems and corresponding reciprocal systems and applications, Mech. Mach. Theory, 36(5): 633-651

變胞機構:
◆R. Wang, Y. Song, and J.S. Dai, 2021, Reconfigurability of the origami-inspired integrated 8R kinematotropic metamorphic mechanism and its evolved 6R and 4R mechanisms, Mech. Mach. Theory, 161: 104245.
◆X. Chai, X. Kang, D. Gan, H. Yu, and J.S. Dai, 2021, Six novel 6R metamorphic mechanisms induced from three-series-connected Bennett linkages that vary among classical linkages, Mech. Mach. Theory, 156: 104133.
◆X. Kang, H. Feng, J.S. Dai, and H. Yu, 2020, High-order based revelation of bifurcation of novel Schatz-inspired metamorphic mechanisms using screw theory, Mech. Mach. Theory, 152: 103931.
◆R. Wang, Y. Liao, J.S. Dai, H. Chen, and G. Cai, 2019, The isomorphic design and analysis of a novel plane-space polyhedral metamorphic mechanism, Mech. Mach. Theory, 131: 152-171.
◆X. Chai, and J.S. Dai, 2019, Three novel symmetric Waldron-Bricard metamorphic and reconfigurable mechanisms and their isomerization, ASME J. Mech. Robot., 11(5): 051011.
◆X. Ma, K. Zhang, and J.S. Dai, 2018, Novel spherical-planar and Bennett-spherical 6R metamorphic linkages with reconfigurable motion branches, Mech. Mach. Theory, 128: 628-647.
◆D. Gan, J.S. Dai, J. Dias, and L. Seneviratne, 2016, Variable motion/force transmissibility of a metamorphic parallel mechanism with reconfigurable 3T and 3R motion, ASME J. Mech. Robot., 8(5): 051001.
◆F. Aimedee, G. Gogu, J.S. Dai, C. Bouzgarrou, and N. Bouton, 2016, Systematization of morphing in reconfigurable mechanisms, Mech. Mach. Theory, 96: 215-224.
◆Y. Qin, J.S. Dai, and G. Gogu, 2014, Multi-furcation in a derivative queer-square mechanism, Mech. Mach. Theory, 81: 36-53.◆S. Li, and J.S. Dai, 2012, Structure synthesis of single-driven metamorphic mechanisms based on the augmented assur groups, ASME J. Mech. Robot., 4(3): 031004.

折塊機構、折紙機構:
◆G. Jia, H. Huang, H. Guo, B. Li, and J.S. Dai, 2021, Design of transformable hinged ori-block dissected from cylinders and cones, ASME J. Mech. Des., 143(9): 094501.
◆M. Salerno, K. Zhang, A. Menciassi, and J.S. Dai, 2016, A novel 4-dof origami grasper with an SMA-actuation system for minimally invasive surgery, IEEE Trans. Robot., 32(3): 484-498.
◆C. Qiu, K. Zhang, and J.S. Dai, 2016, Repelling-screw based force analysis of origami mechanisms, ASME J. Mech. Robot., 8(3): 031001.
◆K. Zhang, C. Qiu, and J.S. Dai, 2015, Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators, ASME J. Mech. Robot., 7(2): 021014.
◆J.S. Dai, and D. Caldwell, 2010, Origami-based robotic paper-and-board packaging for food industry, Trends Food Sci. Tech., 21(3): 153-157.
◆J.S. Dai, and J. Jones, 2005, Matrix representation of topological changes in metamorphic mechanisms, ASME J. Mech. Des., 127(4): 837-840.

并聯機構:
◆C. Kuo, and J.S. Dai, 2021, Structure synthesis of a class of parallel manipulators with fully decoupled projective motion, ASME J. Mech. Robot., 13(3): 031011.
◆Y. Song, X. Kang, and J.S. Dai, 2020, Instantaneous mobility analysis using the twist space intersection approach for parallel mechanisms, Mech. Mach. Theory, 151: 103866.
◆X. Kang, and J.S. Dai, 2019, Relevance and transferability for parallel mechanisms with reconfigurable platforms, ASME J. Mech. Robot., 11(3): 031012.
◆X. Zhang, P. Lopez-Custodio, and J.S. Dai, 2018, Compositional submanifolds of prismatic-universal-prismatic and skewed prismatic-revolute-prismatic kinematic chains and their derived parallel mechanisms, ASME J. Mech. Robot., 10(3): 031001.
◆F. Aimedee, G. Gogu, J.S. Dai, C. Bouzgarrou, and N. Bouton, 2016, Redundant singularities versus constraint singularities in parallel mechanisms, Proc. IMechE. Part C: J. Mech. Eng. Sci., 230(3): 445-453.

控制:
◆E. Spyrakos-Papastavridis, and J.S. Dai, 2021, Flexible-joint humanoid balancing augmentation via full-state feedback variable impedance control, ASME J. Mech. Robot., 13(2): 021014.
◆Y. Zhao, Z. Song, T. Ma, and J.S. Dai, 2020, Optimization of stiffness to achieve increased bandwidth and torque resolution in nonlinear stiffness actuators, IEEE Trans. Ind. Electron., 67(4): 2925-2935.
◆E. Spyrakos-Papastavridis, P.N. Childs, and J.S. Dai, 2020, Passivity preservation for variable impedance control of compliant robots, IEEE-ASME Trans. Mechatron., 25(5): 2342-2353.
◆E. Spyrakos-Papastavridis, J.S. Dai, P.N. Childs, and N. Tsagarakis, 2018, Selective-compliance-based Lagrange model and multilevel noncollocated feedback control of a humanoid robot, ASME J. Mech. Robot., 10(3): 031009.足式機器人:
◆C. Zhang, C. Zhang, J.S. Dai, and P. Qi, 2019, Stability margin of a metamorphic quadruped robot with a twisting trunk, ASME J. Mech. Robot., 11(6): 064501.
◆C. Zhang, and J.S. Dai, 2018, Continuous static gait with twisting trunk of a metamorphic quadruped robot, Mech. Sci., 9(1): 1-14.
◆C. Zhang, and J.S. Dai, 2018, Trot gait with twisting trunk of a metamorphic quadruped robot, J. Bio. Eng., 15(6): 971-981.

靈巧手:
◆L. Cui, and J.S. Dai, 2012, Reciprocity-based singular value decomposition for inverse kinematic analysis of the metamorphic multifingered hand, ASME J. Mech. Robot., 4(3): 034502.
◆G. Wei, J.S. Dai, S. Wang, and H. Luo, 2011, Kinematic analysis and prototype of a metamorphic anthropomorphic hand with a reconfigurable palm, Int. J. Humanoid Robot., 8(3): 459-479.
◆J.S. Dai, D. Wang, and L. Cui, 2009, Orientation and workspace analysis of the multifingered metamorphic hand-metahand, IEEE Trans. Robot., 25(4): 942-947.
◆W. Yao, and J.S. Dai, 2008, Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space, ASME J. Mech. Des., 130(2): 022303.
◆J.S. Dai, and D. Wang, 2007, Geometric analysis and synthesis of the metamorphic robotic hand, ASME J. Mech. Des., 129(11): 1191-1197.

康復機器人:
◆J. Saglia, N. Tsagarakis, J.S. Dai, and D. Caldwell, 2009, Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation, Proc. Ins. Mech. Eng. Part I-J. Sys. Cont. Eng., 223(I1): 53-70.
◆J. Saglia, N. Tsagarakis, J.S. Dai, and D. Caldwell, 2009, A high-performance redundantly actuated parallel mechanism for ankle rehabilitation, Int. J. Robot. Res., 28(9): 1216-1227.
◆J. Saglia, J.S. Dai, and D. Caldwell, 2008, Geometry and kinematic analysis of a redundantly actuated parallel mechanism that eliminates singularities and improves dexterity, ASME J. Mech. Des., 130(12): 124501.
◆J.S. Dai, T. Zhao, and C. Nester, 2004, Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device, Auton. Robot., 16(2): 207-218.

軟體機器人:
◆R. Wang, H. Huang, R. Xu, K. Li, and J.S. Dai, 2021, Design of a novel simulated "soft" mechanical grasper, Mech. Mach. Theory, 158: 104240.
◆Z. Song, D. Gao, Y. Zhao, and J.S. Dai, 2021, An improved Bouc-Wen model based on equitorque discretization for a load-dependent nonlinear stiffness actuator, IEEE Trans. Autom. Sci. Eng., 18(2): 840-849.
◆C. Yang, S. Geng, I. Walker, D. Branson, J. Liu, J.S. Dai, and R. Kang, 2020, Geometric constraint-based modeling and analysis of a novel continuum robot with Shape Memory Alloy initiated variable stiffness, Int. J. Robot. Res., 39(14): 1620-1634: 0278364920913929.
◆C. Sun, L. Chen, J. Liu, J.S. Dai, and R. Kang, 2020, A hybrid continuum robot based on pneumatic muscles with embedded elastic rods, Proc. IMechE. Part C: J. Mech. Eng. Sci., 234(1): 318-328.
◆L. Meng, R. Kang, D. Gan, G. Chen, L. Chen, D. Branson, and J.S. Dai, 2020, A mechanically intelligent crawling robot driven by shape memory alloy and compliant bistable mechanism, ASME J. Mech. Robot., 12(6): 061005.
◆C. Wang, S. Geng, D. Branson, C. Yang, J.S. Dai, and R. Kang, 2019, Task space-based orientability analysis and optimization of a wire-driven continuum robot, Proc. IMechE. Part C: J. Mech. Eng. Sci., 233(23-24): 7658-7668.

制造:
◆A. Niazi, J.S. Dai, S. Balabani, and L. Seneviratne, 2007, A new overhead estimation methodology: a case study in an electrical engineering company, Proc. IMechE. Part B: J. Eng. Manuf., 221(4): 699-710.
◆A. Niazi, J.S. Dai, S. Balabani, and L. Seneviratne, 2006, Product cost estimation: Technique classification and methodology review, ASME J. Manuf. Sci. Eng., 128(2): 563-575.
◆L. Yao, Z. Ye, J.S. Dai, and H. Cai, 2005, Geometric analysis and tooth profiling of a three-lobe helical rotor of the Roots blower, J. Mater. Proc. Tech., 170(1-2): 259-267.
◆R. Silversides, J.S. Dai, and L. Seneviratne, 2005, Force analysis of a vibratory bowl feeder for automatic assembly, ASME J. Mech. Des., 127(4): 637-645.


六十甲子24山吉凶| 百家乐官网游戏机压法| 皇马百家乐的玩法技巧和规则| 成安县| 百家乐庄闲最佳打法| 优博娱乐场| 可以玩百家乐的博彩网站| 星空棋牌舟山下载| 香港百家乐官网的玩法技巧和规则| 百家乐庄最高连开几把| 百家乐官网荷| 百家乐官网技巧看路| 大发888百家乐| 百家乐官网赌博技巧论坛| 尊龙百家乐赌场娱乐网规则| 百家乐官网改单软件| 威尼斯人娱乐场安全吗| 电投百家乐官网网站| 玩百家乐怎么能赢呢| 菲律宾百家乐官网太阳城| 香港六合彩85期开奖结果| 风水上看做生意养金毛好吗| 太阳城娱乐开户| 金花百家乐的玩法技巧和规则 | 百家乐官网娱乐场开户注册| 大发888电脑版下载| 网上百家乐官网指| 百家乐官网怎样发牌| 连环百家乐怎么玩| 龙博| 百家乐怎么赢博彩正网| 百家乐官网策略网络游戏信誉怎么样| 真钱百家乐官网公司哪个好| 尊龙备用网址| 线上娱乐网站| 十大博彩网| 36棋牌的深海捕鱼| 大发888真钱娱乐游戏博彩| 二八杠玩法| 百家乐真人游戏娱乐平台| 百家乐赌场规则|