ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
ZhongRui Wang
Associate Professor
wangzr@sustech.edu.cn

Dr. Zhongrui Wang is a tenured associate professor at the School of Microelectronics at Southern University of Science and Technology, a awardee of the NSFC Excellent Youth Fund (Hong Kong and Macau), and a Clarivate Highly Cited Researcher. Prior to joining SUSTech, he was an assistant professor in the Department of Electrical and Electronic Engineering at the University of Hong Kong. He earned his Bachelor's degree (First Class Honors) and Ph.D. from Nanyang Technological University in Singapore.

Dr. Wang's research primarily focuses on novel AI hardware and algorithm co-design. He has published papers as a corresponding or first author in journals such as Nature Reviews Materials, Nature Materials, Nature Electronics (4 papers), Nature Machine Intelligence (2 papers), Nature Computational Science (2 papers), Nature Communications (3 papers), Science Advances (3 papers), as well as conferences like DAC (6 papers), ICCAD (2 papers), ICCV and IEDM.

His work has received over 19,000 citations on Google Scholar (h-index of 49) and has been featured in over 40 news outlets, including IEEE Spectrum, Scientific American, Science Daily, Phys.org, and ACM Communications.

Dr. Wang was a member of the IEEE Electron Devices Society's Nanotechnology Committee and serves on the editorial boards of journals such as InfoMat, Materials Today Electronics, Frontiers in Neuroscience, and APL Machine Learning.

Email: wangzr@sustech.edu.cn. For more information, please visit https://zhongruiwang.github.io/.


Education

2014, Ph.D., Nanyang Technological University, Singapore

2009, Bachelor's Degree (First Class Honors), Nanyang Technological University, Singapore

 

Work Experience

2024–Present, Tenured Associate Professor, Southern University of Science and Technology

2020–2024, Assistant Professor, University of Hong Kong

2014–2020, Postdoctoral Researcher, University of Massachusetts Amherst

 

Awards

Clarivate highly cited researchers (2023 and 2024, 1 out of 16 in SUSTech)

Best poster award, Nature Conferences on Neuromorphic Computing (2025)


Research Interests

(Students with a background in machine learning, computer architecture, or math/physics/statistics are welcome to apply)

· Novel AI hardware and its software co-design

· Applications (Efficient embodied AI, agents)

 

Papers
(Google Scholar:https://scholar.google.com/citations?user=Ofl3nUsAAAAJ)

(ResearchGate: https://www.researchgate.net/profile/Zhongrui-Wang-2)

Recent representative works

1. S. Wang?, Y. Li?, D. Wang, W. Zhang, X. Chen, D. Dong, S. Wang, X. Zhang, P. Lin, C. Gallicchio, X. Xu, Q. Liu, K.-T. Cheng, Z. Wang*, D. Shang*, M. Liu, Echo state graph Neural Networks with Analogue Random Resistor Arrays, Nature Machine Intelligence, 5, 104 (2023) [Main corresponding author]

2. N. Lin?, S. Wang?, Y. Li?, B. Wang, S. Shi, Y. He, W. Zhang, Y. Yu, Y. Zhang, X. Qi, X. Chen, H. Jiang, X. Zhang, P. Lin, X. Xu, Q. Liu, Z. Wang*, D. Shang*, M. Liu, Resistive memory-based zero-shot liquid state machine for multimodal event data learning, Nature Computational Science, 5, 37 (2025) [Main corresponding author]

3. M. Xu, S. Wang, Y. He, Y. Li, W. Zhang, M. Yang, X. Qi*, Z. Wang*, M. Xu*, D. Shang*, Q. Liu, X. Miao, M. Liu, Efficient modelling of ionic and electronic interactions by resistive memory-based reservoir graph neural network, Nature Computational Science (In Press) [Main corresponding author]

4. S. Wang?, Y. Gao?, Y. Li?, W. Zhang, Y. Yu, B. Wang, N. Lin, H. Chen, Y. Zhang, Y. Jiang, D. Wang, J. Chen, P. Dai, H. Jiang, P. Lin, X. Zhang, X. Qi, X. Xu, H. So, Z. Wang*, D. Shang*, Q. Liu, K-T. Cheng, Ming Liu, Random resistive memory-based deep extreme point learning machine for unified visual processing, Nature Communications, 16, 960 (2025). [Main corresponding author]

5. Y. Zhang?, W. Zhang?, S. Wang, N. Lin, Y. Yu, Y. He, B. Wang, H. Jiang, P. Lin, X. Xu, X. Qi, Z. Wang*, X. Zhang*, D. Shang*, Q. Liu, K.-T. Cheng, M. Liu, Dynamic neural network with memristive CIM and CAM for 2D and 3D vision, Science Advances, 10, eado1058 (2024) [Main corresponding author]

6. B. Wang, X. Zhang, S. Wang, N. Lin, Y. Li, Y. Yu, Y. Zhang, J. Yang, X. Wu, Y. He, S. Wang, T. Wan, R. Chen, G. Li, Y. Deng, X. Qi*, Z. Wang*, D. Shang*, Topology optimization of random memristors for input-aware dynamic SNN. Science advances. 11. eads5340 (2025) [Main corresponding author]

7. H. Chen?, J. Yang?, J. Chen?*, S. Wang, S. Wang, D. Wang, X. Tian, Y. Yu, X. Chen, Y. Lin, Q. Zhu, Y. He, X. Wu, Y. Li, X. Zhang, N. Lin, M. Xu, X. Zhang, X. Qi, Z. Wang*, H. Wang*, D. Shang*, Q. Liu, K.-T. Cheng, M. Liu, Continuous-Time Digital Twin with Analogue Memristive Neural Ordinary Differential Equation Solver, Science Advance 11, eadr7571 (2025) [Main corresponding author]

8. J. Yang?, H. Chen?, J. Chen?*, S. Wang, S. Wang, Y. Yu, X. Chen, B. Wang, X. Zhang, B. Cui, Y. Li, N. Lin, M. Xu, Y. Li, X. Xu, X. Qi, Z. Wang*, X. Zhang*, D. Shang*, H. Wang, Q. Liu, K.-T. Cheng, M. Liu, Resistive memory-based neural differential equation solver for score-based diffusion model, ArXiv: 2404.05648 https://arxiv.org/abs/2404.05648 [Main corresponding author]

9. Y. Yu, S. Wang, W. Zhang, X. Zhang, X. Wu, Y. He, J. Yang, Y. Zhang, N. Lin, B. Wang, X. Chen, S. Wang, X. Zhang, X. Qi, Z. Wang*, D. Shang*, Q. Liu*, K.-T. Cheng, M. Liu, Efficient and accurate neural field reconstruction using resistive memory, ArXiv: 2404.09613 https://arxiv.org/abs/2404.09613 [Main corresponding author]

10. S. Wang?, X. Chen?, C. Zhao, Y. Kong, B. Lin, Y. Wu, Z. Bi, Z. Xuan, T. Li, Y. Li, W. Zhang, E. Ma, Z. Wang*, W. Ma*, Molecular-scale integration of multi-modal sensing and neuromorphic computing with organic electrochemical transistors, Nature Electronics, 6, 281 (2023) [Co-corresponding author]

11. D. Liu?, X. Tian?, J. Bai?, S. Wang?, S. Dai, Y. Wang, Z. Wang*, S. Zhang*, A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nature Electronics, 7, 1176 (2024) [Co-corresponding author]

Other representative works

1. Z. Wang, H. Wu, G. W. Burr, C. S. Hwang, K. L. Wang, Q. Xia*, and J. J. Yang*, Resistive Switching Materials for Computing, Nature Review Materials, 5, 173-195 (2020) [First author]

2. Z. Wang?, C. Li?, P. Lin?, M. Rao, Y. Nie, W. Song, Q. Qiu, Y. Li, P. Yan, J. P. Strachan, N. Ge, N. McDonald, Q. Wu, M. Hu, H. Wu, R. S. Williams, Q. Xia*, and J. J. Yang*, In situ training of feedforward and recurrent convolutional memristor networks, Nature Machine Intelligence, 1, 434-442 (2019) [First author]

3. Z. Wang?, C. Li?, W. Song, M. Rao, D. Belkin, Y. Li, P. Yan, H. Jiang, P. Lin, M. Hu, J. P. Strachan, N. Ge, M. Barnell, Q. Wu, A. G. Barto, Q. Qiu, R. S. Williams, Q. Xia*, and J. J. Yang*, Reinforcement learning with analogue memristor arrays, Nature Electronics, 2, 115-124 (2019) [First author]

4. Z. Wang? , S. Joshi?(?equally contributed), S. Saveliev, W. Song, R. Midya, M. Rao, Y. Li, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J. H. Yoon, N. K. Upadhyay, J. Zhang, M. Hu, J. P. Strachan, M. Barnell, Q. Wu, H. Wu, R. S. Williams*, Q. Xia*, and J. J. Yang*, Fully memristive neural networks for pattern classification with unsupervised learning, Nature Electronics, 1, 137-145 (2018) [First author]

5. Z. Wang?, S. Joshi?(?equally contributed), S. E Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H. L Xin, R. S. Williams, Q. Xia, and J. J. Yang*, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Nature Materials, 16, 101-108 (2017) [First author]


百家乐筹码方| 至尊百家乐年代| 百家乐官网博弈指| 赌百家乐官网的心得体会| 永利高投注网| 清镇市| 百家乐包赢| 1737棋牌游戏中心| 在线博彩网| 大赢家即时比分| 网上娱乐城| 定边县| 百家乐官网玩法教学视频| 长乐坊娱乐城| 利记娱乐场| 8大胜| 线上百家乐游戏| 澳盈88开户,| ea平台| 五原县| 可以玩百家乐官网的博彩公司| 百家乐官网的路单怎样看| 百家乐官网庄闲概率| 总统百家乐官网的玩法技巧和规则| 百家乐官网透视牌靴价格| 澳门百家乐官网官网网站| 百家乐官网赢退输进有哪些| 百家乐官网一年诈骗多少钱| 哪个百家乐玩法平台信誉好| 百家乐隔一数打法| 澳门百家乐技术| 百家乐证据| 澳博| 宝马会网上娱乐| 百家乐官网赢钱海立方| 线上百家乐官网代理| 网页百家乐官网游戏下载| 百家乐博送彩金18| 大发8887s88| 真钱百家乐赌博| 永利百家乐官网娱乐平台|