ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
Xuyang Wu
Associate Professor

Xuyang Wu received the Bachelor of Science degree in Applied Mathematics from Northwestern Polytechnical University, China, in 2015, and the Ph.D. degree in Communication and Information Systems from the University of Chinese Academy of Sciences, China, in 2020. From 2020 - 2023, He was a postdoctoral researcher at KTH Royal Institute of Technology, Sweden. He is currently an associate professor in the School of  Automation and Intelligent Manufacturing (AiM, Former: School of System Design and Intelligent Manufacturing), Southern University of Science and Technology, Shenzhen, China. His research interests include distributed and large-scale optimization, machine learning, and related areas. He has published 7 first-authored papers on top-tier journals in the control society and AI conferences, including 5 papers on IEEE Transactions on Automatic Control (IEEE TAC) and Automatica, and 2 papers on International Conference on Machine Learning (ICML).


Learn more: http://xuyangwu.github.io


Education Background

◆ Sep. 2015 - Aug. 2020
Ph.D student, Communication and Information Systems, The University of Chinese Academy of Sciences, China.

◆ Sep. 2011 - Jul. 2015

B.S. student, Applied Mathematics, Northwestern Polytechnical University, China.


Working Experience

◆ Jun. 2025 - present.
Associate Professor, School of Automation and Intelligent Manufacturing (AiM), Southern University of Science and Technology, China.

◆ Feb. 2024 - Jun. 2025.

Assistant Professor, School of Automation and Intelligent Manufacturing (AiM), Southern University of Science and Technology, China.
◆ Dec. 2023 - Jan. 2024.

Visiting Scholar, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong
◆ Dec. 2020 - Nov. 2023
Postdoctoral Researcher, Division of Decision and Control Systems, KTH Royal Institute of Technology, Sweden.


Research Area

Distributed and large-scale optimization, machine learning, and related areas.


Publications

[1] X. Wu, S. Magnusson, and M. Johansson. “Distributed Safe Resource Allocation using Barrier Functions”, Automatica, 2023.

[2] X. Wu, H.R. Feyzmahdavian, S. Magnusson, M. Johansson. “Delay-adaptive Step-sizes for Asynchronous Learning”, Proc. International Conference on Machine Learning (ICML), 2022.

[3] X. Wu, C. Liu, S. Magnusson, M. Johansson. “Delay-agnostic Asynchronous Coordinate Update Algorithm”, Proc. International Conference on Machine Learning (ICML), 2023.

[4] X. Wu, H. Wang, and J. Lu. “Distributed Optimization with Coupling Constraints”, IEEE Transactions on Automatic Control, 2023.

[5] X. Wu and J. Lu. “A Unifying Approximate Method of Multipliers for Distributed Composite Optimization”, IEEE Transactions on Automatic Control, 2023.

[6] X. Wu, Z. Qu, and J. Lu. “A Second-Order Proximal Algorithm for Consensus Optimization”, IEEE Transactions on Automatic Control, 2021.

[7] X. Wu and J. Lu. “Fenchel Dual Gradient Methods for Distributed Convex Optimization over Time-varying Networks”, IEEE Transactions on Automatic Control, 2019.


连环百家乐的玩法技巧和规则| 大发888娱乐城健账号| 尊龙百家乐娱乐场开户注册| 百家乐官网视频游戏冲值| 威尼斯人娱乐城微博| 网上百家乐骗人| 百家乐官网真人娱乐场| 大发888娱乐登录| 百家乐解密软件| 七胜百家乐官网赌场娱乐网规则 | 广州百家乐官网扫描分析| 六合彩报纸| 百家乐筹码| 百家乐官网论坛bocaila| 至尊百家乐官网2012| 皇冠足球开户| 大发888软件下载| 云赢百家乐分析| 罗盘24山八卦| 悦榕庄百家乐官网的玩法技巧和规则| 百家乐官网去澳门| 真人百家乐官网打法| 上海德州扑克比赛| 威尼斯人娱乐城惊喜| 半圆百家乐桌布| 百家乐免费路单| 旅百家乐官网赢钱律| 蓝盾百家乐官网庄家利润分| 百家乐官网投注哪个信誉好| 百家乐官网怎么看单| 皇冠正网| 足球比分直播| 欢乐谷棋牌游戏官网| 大发888娱乐城官方网站lm0| 温州百家乐的玩法技巧和规则| 川宜百家乐注册号| 百家乐视频双扣游戏| 百家乐神仙道礼包| 免费百家乐官网追号工具| 筹码百家乐官网的玩法技巧和规则 | 博彩资讯|