ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
Xuyang Wu
Associate Professor
wuxy6@sustech.edu.cn

Xuyang Wu received the Bachelor of Science degree in Applied Mathematics from Northwestern Polytechnical University, China, in 2015, and the Ph.D. degree in Communication and Information Systems from the University of Chinese Academy of Sciences, China, in 2020. From 2020 - 2023, He was a postdoctoral researcher at KTH Royal Institute of Technology, Sweden. He is currently an associate professor in the School of  Automation and Intelligent Manufacturing (AiM, Former: School of System Design and Intelligent Manufacturing), Southern University of Science and Technology, Shenzhen, China. His research interests include distributed and large-scale optimization, machine learning, and related areas. He has published 7 first-authored papers on top-tier journals in the control society and AI conferences, including 5 papers on IEEE Transactions on Automatic Control (IEEE TAC) and Automatica, and 2 papers on International Conference on Machine Learning (ICML).


Learn more: http://xuyangwu.github.io


Education Background

◆ Sep. 2015 - Aug. 2020
Ph.D student, Communication and Information Systems, The University of Chinese Academy of Sciences, China.

◆ Sep. 2011 - Jul. 2015

B.S. student, Applied Mathematics, Northwestern Polytechnical University, China.


Working Experience

◆ Jun. 2025 - present.
Associate Professor, School of Automation and Intelligent Manufacturing (AiM), Southern University of Science and Technology, China.

◆ Feb. 2024 - Jun. 2025.

Assistant Professor, School of Automation and Intelligent Manufacturing (AiM), Southern University of Science and Technology, China.
◆ Dec. 2023 - Jan. 2024.

Visiting Scholar, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong
◆ Dec. 2020 - Nov. 2023
Postdoctoral Researcher, Division of Decision and Control Systems, KTH Royal Institute of Technology, Sweden.


Research Area

Distributed and large-scale optimization, machine learning, and related areas.


Publications

[1] X. Wu, S. Magnusson, and M. Johansson. “Distributed Safe Resource Allocation using Barrier Functions”, Automatica, 2023.

[2] X. Wu, H.R. Feyzmahdavian, S. Magnusson, M. Johansson. “Delay-adaptive Step-sizes for Asynchronous Learning”, Proc. International Conference on Machine Learning (ICML), 2022.

[3] X. Wu, C. Liu, S. Magnusson, M. Johansson. “Delay-agnostic Asynchronous Coordinate Update Algorithm”, Proc. International Conference on Machine Learning (ICML), 2023.

[4] X. Wu, H. Wang, and J. Lu. “Distributed Optimization with Coupling Constraints”, IEEE Transactions on Automatic Control, 2023.

[5] X. Wu and J. Lu. “A Unifying Approximate Method of Multipliers for Distributed Composite Optimization”, IEEE Transactions on Automatic Control, 2023.

[6] X. Wu, Z. Qu, and J. Lu. “A Second-Order Proximal Algorithm for Consensus Optimization”, IEEE Transactions on Automatic Control, 2021.

[7] X. Wu and J. Lu. “Fenchel Dual Gradient Methods for Distributed Convex Optimization over Time-varying Networks”, IEEE Transactions on Automatic Control, 2019.


百家乐官网网络赌博网址| 百家乐官网规则技法| 庄闲和百家乐桌布| 御匾会百家乐官网的玩法技巧和规则 | 百家乐官网的玩法技巧和规则| 威尼斯人娱乐城博彩网站| 金城百家乐买卖路| 娱乐城百家乐规则| 哪个百家乐投注比较好| 乐九百家乐娱乐城| 广东百家乐扫描分析仪| 百家乐官网透明牌靴| 真人百家乐官网开户优惠| 百家乐官网智能软件| 尊龙百家乐官网娱乐平台| 百家乐图形的秘密破解| 百家乐作弊演示| 百家乐官网园好又多| 卓资县| 金赞娱乐| 大发888娱乐游戏下载 客户端| 百家乐网上真钱娱乐| 娱乐城送现金| 蓬安县| 百家乐官网投注信用最好的| 百家乐官网龙虎台布作弊技巧| 百家乐官网任你博娱乐平台| 百家乐官网园天将| 百家乐览| 大发888娱乐城 qq服务| 大发888娱乐城账号| 网络博彩网| 百家乐官网赌场规则| 大赢家百家乐官网的玩法技巧和规则 | 现金百家乐| 大发888官网游戏平台| 百家乐多少钱| 大发888娱乐85战神版| 百家乐网站制作| 三星百家乐的玩法技巧和规则 | 百家乐怎么玩能赢钱|