ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
Xuyang Wu
Associate Professor
wuxy6@sustech.edu.cn

Xuyang Wu received the Bachelor of Science degree in Applied Mathematics from Northwestern Polytechnical University, China, in 2015, and the Ph.D. degree in Communication and Information Systems from the University of Chinese Academy of Sciences, China, in 2020. From 2020 - 2023, He was a postdoctoral researcher at KTH Royal Institute of Technology, Sweden. He is currently an associate professor in the School of  Automation and Intelligent Manufacturing (AiM, Former: School of System Design and Intelligent Manufacturing), Southern University of Science and Technology, Shenzhen, China. His research interests include distributed and large-scale optimization, machine learning, and related areas. He has published 7 first-authored papers on top-tier journals in the control society and AI conferences, including 5 papers on IEEE Transactions on Automatic Control (IEEE TAC) and Automatica, and 2 papers on International Conference on Machine Learning (ICML).


Learn more: http://xuyangwu.github.io


Education Background

◆ Sep. 2015 - Aug. 2020
Ph.D student, Communication and Information Systems, The University of Chinese Academy of Sciences, China.

◆ Sep. 2011 - Jul. 2015

B.S. student, Applied Mathematics, Northwestern Polytechnical University, China.


Working Experience

◆ Jun. 2025 - present.
Associate Professor, School of Automation and Intelligent Manufacturing (AiM), Southern University of Science and Technology, China.

◆ Feb. 2024 - Jun. 2025.

Assistant Professor, School of Automation and Intelligent Manufacturing (AiM), Southern University of Science and Technology, China.
◆ Dec. 2023 - Jan. 2024.

Visiting Scholar, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong
◆ Dec. 2020 - Nov. 2023
Postdoctoral Researcher, Division of Decision and Control Systems, KTH Royal Institute of Technology, Sweden.


Research Area

Distributed and large-scale optimization, machine learning, and related areas.


Publications

[1] X. Wu, S. Magnusson, and M. Johansson. “Distributed Safe Resource Allocation using Barrier Functions”, Automatica, 2023.

[2] X. Wu, H.R. Feyzmahdavian, S. Magnusson, M. Johansson. “Delay-adaptive Step-sizes for Asynchronous Learning”, Proc. International Conference on Machine Learning (ICML), 2022.

[3] X. Wu, C. Liu, S. Magnusson, M. Johansson. “Delay-agnostic Asynchronous Coordinate Update Algorithm”, Proc. International Conference on Machine Learning (ICML), 2023.

[4] X. Wu, H. Wang, and J. Lu. “Distributed Optimization with Coupling Constraints”, IEEE Transactions on Automatic Control, 2023.

[5] X. Wu and J. Lu. “A Unifying Approximate Method of Multipliers for Distributed Composite Optimization”, IEEE Transactions on Automatic Control, 2023.

[6] X. Wu, Z. Qu, and J. Lu. “A Second-Order Proximal Algorithm for Consensus Optimization”, IEEE Transactions on Automatic Control, 2021.

[7] X. Wu and J. Lu. “Fenchel Dual Gradient Methods for Distributed Convex Optimization over Time-varying Networks”, IEEE Transactions on Automatic Control, 2019.


大发888娱乐方下载| 丰台区| 富田太阳城租房| 百家乐官网能赢到钱吗| 百家乐官网桌子豪华| 百家乐15人桌布| 融水| 穆棱市| 免佣百家乐赌场优势| 磨丁黄金城赌场| 澳门百家乐心得玩博| 澳门赌博网站| 百家乐全透明牌靴| 网上最好赌博网站| 百家乐娱乐注册就送| 线上kk娱乐城| 百家乐视频游戏账号| 金都娱乐场| 百家乐博彩技巧视频| 横山县| 百家乐路纸下| 百家乐官网送彩金网络| 全讯网备用网址| 网上百家乐官网哪里开户| 百家乐大西洋| 百家乐官网二十一点游戏| 百家乐家| 百家乐官网注码论坛| 百家乐决战推筒子| 百家乐官网巴黎| 百家乐局部| 最新博彩论坛| 博彩百家乐龙虎| 百家乐官网下注所有组合| 百家乐15人桌布| 线上百家乐官网技巧| 太阳城绿萱园| 百家乐官网法则| 东莞市| 赌场百家乐怎么破解| 百家乐官网桌码合|