ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
Xiandeng WU
Associate Professor
wuxd3@sustech.edu.cn

Self-introduction:

Dr. Wu received a B.S. degree in Biological Science from Nanjing University in 2016, and obtained his Ph.D. degree in Life Science with Dr. Mingjie Zhang at Hong Kong University of Science and Technology in 2021. He continued postdoctoral training until 2024, where he systematically demonstrated that the presynaptic terminal is profoundly organized via phase separation. He joined Southern University of Science and Technology in 2025 as an assistant professor, and devoted to understanding how phase separation contributes to presynaptic organization and function, as well as general implications of phase separation in communication between membraneless condensates and membranous organelles. Dr. Wu has published in Cell, Molecular Cell, Developmental Cell, Annual Review of Neuroscience, ect.


Research Interests:

Phase separation has been increasingly recognized as a general principle of cellular compartmentalization. Neuronal synapse is a highly specialized and polarized structure, where synaptic compartmentalization fundamentally participates in neuronal assembly and function. We are committed to investigating how phase separation underlies presynaptic compartments formation and dynamic regulation, as well as their functional implication to synaptic transmission, synapse formation, and synaptic plasticity. We particularly interested in:

◆ How does phase separation orchestrate synaptic vesicle cycling?

◆ How do multiple compartments interact with each other in the presynaptic bouton?

◆ How do pre- and post-synaptic compartments synergize with each other in response to synaptic stimulation and plasticity?

◆ How does phase separation contribute to membraneless condensates communication with membranous organelles in general?


Professional Experience:

◆ 2025.01-present, Assistant Professor, Southern University of Science and Technology

◆ 2021.07-2024.12, Postdoctoral Fellow, Hong Kong University of Science and Technology


Educational Background:

◆ 2016.09-2021.06, PhD, Life Sciences, Hong Kong University of Science and Technology.

◆ 2012.09-2016.06, B.S., Biological Science, Nanjing University.


Honors & Awards:

◆ 2021 Hong Kong RGC Postdoctoral Fellowship Scheme (2021-2024)

◆ 2019 School of Science Postgraduate Research Excellence Award, HKUST

◆ 2016 Excellent graduate, Outstanding dissertation, Nanjing University

◆ 2014 China National scholarship, Ministry of Education of China


Selected Publication:

Wu, X., Shen, Z., & Zhang, M.* (2025). Phase separation-mediated compartmentalization underlies synapse formation and plasticity. Annual Review of Neuroscience, [invited review]

◆ Qiu, H.#, Wu, X.#, Ma, X., Li, S., Cai, Q., Ganzella, M., Ge, L., Zhang, H., & Zhang, M.* (2024). Short-distance vesicle transport via phase separation. Cell, 187 (9), 2175-2193.e21. (co-first author)

Wu, X., Qiu, H., & Zhang, M.* (2023). Interactions between membraneless condensates and membranous organelles at the presynapse: a phase separation view of synaptic vesicle cycle. Journal of Molecular Biology. [invited review]

Wu, X., Ganzella, M., Zhou, J., Zhu, S., Jahn, R., Zhang, M.* (2021). Vesicle Tethering on the Surface of Phase Separated Active Zone Condensates. Molecular Cell, 81(1), 13-24.

Wu, X., Cai, Q., Feng, Z., & Zhang, M.* (2020). Liquid-liquid phase separation in neuronal development and synaptic signaling. Developmental Cell, 55(1), 18-29. [invited review]

Wu, X.#, Cai, Q.#, Shen, Z., Chen, X., Zeng, M., Du, S., & Zhang, M.* (2019). RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase Separation. Molecular cell, 73(5), 971-984.


Other Info:

◆ Zhu, S., Shen, Z., Wu, X., & Zhang, M.* (2025). Phase separation in the multi-compartment organization of synapses. Current Opinion in Neurobiology, 90, 102975.

◆ Zhu, S.#, Shen, Z.#, Wu, X., Han, W., Jia, B., Lu, W., & Zhang, M.* (2024). Demixing is a default process for biological condensates formed via phase separation. Science, 384(6698), 920-928.

◆ Cai, Q., Zeng, M., Wu, X., Wu, H., Zhan, Y., Tian, R., & Zhang, M.* (2021). CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation. Cell Research, 31(1), 37-51.

◆ Feng, Z., Wu, X., & Zhang, M.* (2021). Presynaptic bouton compartmentalization and postsynaptic density-mediated glutamate receptor clustering via phase separation. Neuropharmacology, 193, 108622. [invited review]

Wu, X.#, Cai, Q.#, Chen, Y., Zhu, S., Mi, J., Wang, J., & Zhang, M.* (2020). Structural Basis for the High-Affinity Interaction between CASK and Mint1. Structure, 28(6), 664-673.

◆ Chen, X., Wu, X., Wu, H., & Zhang, M.* (2020). Phase separation at the synapse. Nature Neuroscience, 23(3), 301–310. [invited review]

◆ Feng, Z., Chen, X., Wu, X., & Zhang, M.* (2019). Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. Journal of Biological Chemistry, 294(40), 14823-14835. [invited review]

百家乐几点不用补牌| 百苑百家乐的玩法技巧和规则| 宿松县| 百家乐心态研究| 轮盘赌技巧| 百家乐发牌靴遥控| 百家乐官网大转轮真人视讯| 大发888娱乐城 真钱下载| 百家乐官网过滤| 蒲江县| 海燕百家乐论| 最可信百家乐官网娱乐城| 百家乐官网最新套路| 试玩百家乐帐| 百家乐小游戏开发| 免佣百家乐官网的玩法| 盛世国际| 太子百家乐娱乐城| 百家乐真钱游戏下载| 申博百家乐官网有假吗| 新平| 永城市| 大发888 娱乐平台| 打百家乐最好办法| 澳门百家乐21点| 百家乐官网游戏大厅下| 爱博娱乐| 真钱棋牌| 沙龙开户| bet365ok| 六合彩开奖网站| 大发888信用| 娱乐网百家乐补丁| 做生意的门的方向| 新加坡百家乐官网的玩法技巧和规则 | 大发888游戏 下载| 百家乐五湖四海娱乐场开户注册 | 贵南县| 百家乐官网风云人物| 金臂百家乐| 房山区|