ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
WU Kailiang
Associate Professor
Associate Professor
wukl@sustech.edu.cn

Employment

◆ 2021.01-present: Associate Professor, Department of Mathematics, Southern University of Science and Technology

◆ 2016.08-2020.12: Postdoctoral Scholar, Department of Mathematics, The Ohio State University

◆ 2016.04-2016.08: Postdoctoral Fellow, Scientific Computing and Imaging Institute, University of Utah

Education

◆ 2011-2016:  Ph.D.  School of Mathematical Sciences, Peking University

◆ 2007-2011:  B.Sc.  School of Mathematics and Statistics, Huazhong University of Science and Technology


Research Interests

◆ Machine Learning and Data-driven Modeling

◆ Numerical Solutions of Partial Differential Equations

◆ Computational Fluid Dynamics and Astrophysics

◆ High-order Accurate Numerical Methods

◆ Hyperbolic Conservation Laws

◆ Approximation Theory and Uncertainty Quantification


Awards

◆ Zhong Jiaqing Mathematics Award, the Chinese Mathematical Society (2019) One of the three major mathematics awards of the Chinese Mathematical Society (4 per 2 years)

◆ Outstanding Ph.D. Graduates Award, PKU (2016)

◆ Outstanding Youth Paper Award (First Prize), the China Society for Computational Mathematics  (2015)

◆ First Prize of "Challenge Cup" May-4th Youth Science Award, PKU (2014)

◆ President Scholarship, PKU (2014–2016) (The biggest scholarship of PKU)


Selected Publications (latest update: May 2021)

◆ K. Wu

Positivity-preserving analysis of numerical schemes for ideal magnetohydrodynamics
SIAM Journal on Numerical Analysis,    56(4):2124--2147, 2018.


◆ K. Wu and C.-W. Shu

Provably positive high-order schemes for ideal magnetohydrodynamics: Analysis on general meshes

Numerische Mathematik,    142(4): 995--1047, 2019.


◆ K. Wu and D. Xiu

Data-driven deep learning of partial differential equations in modal space

Journal of Computational Physics,    408: 109307, 2020. 


◆ K. Wu and C.-W. Shu

Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations

Numerische Mathematik,    accepted for publication, 2021.



◆ K. Wu 

Minimum principle on specific entropy and high-order accurate invariant region preserving numerical methods for relativistic hydrodynamics

submitted for publication, arXiv:2102.03801, 2021.


◆ Z. Chen, V. Churchill, K. Wu, and D. Xiu
Deep neural network modeling of unknown partial differential equations in nodal space
Journal of Computational Physics,    submitted for publication, 2021.


◆ K. Wu and Y. Xing

Uniformly high-order structure-preserving discontinuous Galerkin methods for Euler equations with gravitation: Positivity and well-balancedness

SIAM Journal on Scientific Computing,    accepted for publication, 2020.


◆ K. Wu, T. Qin, and D. Xiu

Structure-preserving method for reconstructing unknown Hamiltonian systems from trajectory data

SIAM Journal on Scientific Computing,    42(6): A3704--A3729, 2020. 


◆ K. Wu and C.-W. Shu

Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations

SIAM Journal on Scientific Computing,    42(4): A2230--A2261, 2020. 


◆ Z. Chen, K. Wu, and D. Xiu

Methods to recover unknown processes in partial differential equations using data

Journal of Scientific Computing,    85:23, 2020. 


◆ K. Wu, D. Xiu, and X. Zhong

A WENO-based stochastic Galerkin scheme for ideal MHD equations with random inputs 

Communications in Computational Physics,    accepted for publication, 2020.


◆ J. Hou, T. Qin, K. Wu and D. Xiu

A non-intrusive correction algorithm for classification problems with corrupted data

Commun. Appl. Math. Comput.,   in press, 2020.


◆ T. Qin, K. Wu, and D. Xiu

Data driven governing equations approximation using deep neural networks

Journal of Computational Physics,    395: 620--635, 2019.


◆ K. Wu and D. Xiu

Numerical aspects for approximating governing equations using data

Journal of Computational Physics,    384: 200--221, 2019.


◆ K. Wu and C.-W. Shu

A provably positive discontinuous Galerkin method for multidimensional ideal magnetohydrodynamics

SIAM Journal on Scientific Computing,    40(5):B1302--B1329, 2018.


◆ Y. Shin, K. Wu, and D. Xiu

Sequential function approximation with noisy data

Journal of Computational Physics,    371:363--381, 2018.


◆ K. Wu and D. Xiu

Sequential function approximation on arbitrarily distributed point sets

Journal of Computational Physics,    354:370--386, 2018.


◆ K. Wu and H. Tang

On physical-constraints-preserving schemes for special relativistic magnetohydrodynamics with a general equation of state

Z. Angew. Math. Phys.,    69:84(24pages), 2018.


◆ K. Wu, Y. Shin, and D. Xiu

A randomized tensor quadrature method for high dimensional polynomial approximation

SIAM Journal on Scientific Computing,   39(5):A1811--A1833, 2017. 


◆ K. Wu

Design of provably physical-constraint-preserving methods for general relativistic hydrodynamics

Physical Review D,   95, 103001, 2017. 


◆ K. Wu, H. Tang, and D. Xiu

A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty

Journal of Computational Physics,   345:224--244, 2017. 


◆ K. Wu and H. Tang

Admissible states and physical-constraints-preserving schemes for relativistic magnetohydrodynamic equations

Math. Models Methods Appl. Sci. (M3AS),   27(10):1871--1928, 2017. 


◆ Y. Kuang, K. Wu, and H. Tang

Runge-Kutta discontinuous local evolution Galerkin methods for the shallow water equations on the cubed-sphere grid

Numer. Math. Theor. Meth. Appl.,   10(2):373--419, 2017. 


◆ K. Wu and H. Tang

Physical-constraint-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state

Astrophys. J. Suppl. Ser. (ApJS),   228(1):3(23pages), 2017. (2015 Impact Factor of ApJS: 11.257)


◆ K. Wu and H. Tang

A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics

SIAM Journal on Scientific Computing,   38(3):B458--B489, 2016. 


◆ K. Wu and H. Tang

A Newton multigrid method for steady-state shallow water equations with topography and dry areas

Applied Mathematics and Mechanics,   37(11):1441--1466, 2016. 


◆ K. Wu and H. Tang

High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics

Journal of Computational Physics,   298:539--564, 2015.


◆ K. Wu and H. Tang

Finite volume local evolution Galerkin method for two-dimensional relativistic hydrodynamics

Journal of Computational Physics,   256:277--307, 2014. 


◆ K. Wu, Z. Yang, and H. Tang

A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics

Journal of Computational Physics,   264:177--208, 2014.


Professional Services

◆ Reviewer for AMS Mathematical Reviews

◆ Referee for scientific journals including

Communications in Computational Physics

Computer Methods in Applied Mechanics and Engineering

East Asian Journal on Applied Mathematics

Engineering Optimization

Journal of Computational and Applied Mathematics

Journal of Computational Physics

Journal of Scientific Computing

Journal of Applied Mathematics and Computing

Mathematical Models and Methods in Applied Sciences (M3AS)

Mathematica Numerica Sinica

SIAM Journal on Scientific Computing

SIAM/ASA Journal on Uncertainty Quantification



百家乐没有必胜| 百家乐透视牌靴| 百家乐官网荷| 瑞丰备用网址| 网上的百家乐是真是假| 百家乐官网的路图片| 大发888官方6222.| 百家乐赌缆注码运用| 威尼斯人娱乐城送彩金| 赢家百家乐官网的玩法技巧和规则| 日博娱乐| 百家乐游戏试| 24山方向上| 缅甸百家乐官网娱乐| bet365百家乐| 云鼎百家乐的玩法技巧和规则| 大发888游戏平台103| 摩纳哥百家乐官网的玩法技巧和规则| 建水县| 真人百家乐官网视频赌博| 宝胜网| 大发888娱乐日博备用| 最新百家乐出千赌具| 百家乐玩法的技巧| 利高在线娱乐城| 百家乐超级市场| 百家乐室系统软件| 百家乐官网投注方法新版| 视频棋牌游戏大厅| 百家乐筹码皇冠| 波音百家乐现金网投注平台排名导航 | 鑫鼎百家乐娱乐城| 百家乐官网对冲套红利| 百家乐官网买隔一数| 网络百家乐赌博视频| 百家乐官网牌九| 半圆百家乐官网桌布| 百家乐官网投注规则| 仪征市| 大宁县| 德州扑克大小|