ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
WEI Lei
Associate professor
weil@sustech.edu.cn

Dr. Lei Wei received his Ph.D. in mechanical engineering from Hong Kong University of Science and Technology (HKUST) in 2017. He was a postdoctoral research fellow at HKUST Energy Institute from 2018 to 2021. His research interests mainly include the development of materials and devices for flow batteries and electrochemical energy storage systems. He has published more than 70 research articles in journals such as Energy Storage Materials, International Journal of Heat and Mass Transfer, Science Bulletin, etc. His Google Scholar Citation is over 2600 times and his H-index is 28. He has been serving as a long-time reviewer for SCI journals such as Applied Energy and Applied Thermal Engineering.

Research Area:
◆Mass transfer and energy conversion characteristics of redox flow batteries;
◆Development of commercial flow battery stacks;
◆Study on combined energy storage system of hydrogen storage and inorganic e-fuel;
◆Energy storage policy and market demand analysis under emission peak and carbon neutrality.

Work Experience:
◆Oct.2021-present, Research Associate Professor, Department of Mechanical and Energy Engineering, Southern University of Science and Technology.
◆Mar.2021 to Sep.2021, Associate Professor, School of Materials and Energy Engineering, Guangdong University of Technology.
◆Feb.2018 to Feb.2021, Postdoctoral Fellow, Energy Institute, Hong Kong University of Science and Technology.

Education:
◆Ph.D.2017, Department of Mechanical Engineering, Hong Kong University of Science and Technology.
◆M.S.2013, Power Engineering and Engineering Thermophysics, Xi'an Jiaotong University, China.
◆B.S.2009, Department of Materials Science and Engineering, Xi'an Jiaotong University, China.

Professional Recognition:
◆Core member of Advanced Energy Storage Technology Laboratory, Southern University of Science and Technology.
◆7 papers were selected as ESI highly cited papers.

Representative Papers:
◆ L. Wei, T.S. Zhao, G. Zhao, L. An, L. Zeng. A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries. Applied Energy. 2016;176:74-9.
◆ L. Wei, T.S. Zhao, Q. Xu, X.L. Zhou, Z.H. Zhang. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries. Applied Energy. 2017;190:1112-8.
◆ L. Wei, C. Xong, H.R. Jiang, X.Z. Fan, T.S. Zhao. Highly catalytic hollow Ti3C2Tx MXene spheres decorated graphite felt electrode for vanadium redox flow batteries. Energy Storage Materials. 2019; 25: 885-892.
◆ L. Wei, T.S. Zhao, L. Zeng, Y.K. Zeng, H.R. Jiang. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries. Journal of Power Sources. 2017;341:318-26.
◆ L. Wei, T.S. Zhao, L. Zeng, Y.K. Zeng. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Applied Energy. 2016;180:386-91.
◆ L. Wei, M.C Wu, T.S. Zhao, Y.K. Zeng, Y.X. Ren. An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage. Applied Energy. 2018;215:98-5.
◆ L. Wei, L. Zeng, M.C Wu, H.R. Jiang, T.S. Zhao. An aqueous manganese-copper battery for large-scale energy storage applications. Journal of Power Sources. 2019;423:203-210.
◆ L. Wei, L. Zeng, M.C. Wu, X.Z. Fan, T.S. Zhao. Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries. Applied Energy. 2019;251:113344.
◆ L. Wei, H.R. Jiang, Y.X. Ren, M.C Wu, J.B. Xu, T.S. Zhao. Investigation of an aqueous rechargeable battery consisting of manganese tin redox chemistries for energy storage. Journal of Power Sources. 2019;437: 226918.
◆ L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng. Titanium Carbide Nanoparticle‐Decorated Electrode Enables Significant Enhancement in Performance of All‐Vanadium Redox Flow Batteries. Energy Technol-Ger. 2016;4:990.
◆ L. Wei, X. Fan, H. Jiang, K. Liu, M. Wu, T. Zhao, Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method, Journal of Power Sources, 2020; 478; 228725.
◆ L. Wei, Z.X. Guo, J. Sun, X.Z. Fan, M.C. Wu, J.B. Xu, T.S. Zhao. A convention enhanced flow field for aqueous redox flow batteries. International Journal of Heat and Mass Transfer,2021; 179, 121747.

百家乐官网有诈吗| 最好的百家乐官网娱乐场| 博九网百家乐官网现金网| 巴特百家乐的玩法技巧和规则 | 新澳博百家乐官网的玩法技巧和规则 | 百家乐官网java| 百家乐官网赌博策略| 二八杠游戏机| 三元风水24山水法| 网上百家乐官网好玩吗| 威尼斯人娱乐城返水| 鸿胜娱乐城| 百家乐博彩的玩法技巧和规则| 乐天堂百家乐官网娱乐场| tt线上娱乐| 百家乐网上真钱赌场娱乐网规则| 百家乐官网真人赌场娱乐网规则| 铜川市| 百家乐辅助器| 百家乐官网园鼎丰娱乐城| 金沙国际娱乐| 大发8888| 海燕百家乐官网论| 百家乐官网赌博出千| 百家乐微乐| 互联网百家乐官网的玩法技巧和规则 | 百家乐有没有稳赢| 金利娱乐城代理| 做生意房子选哪个方位| 百家乐官网筹码方形筹码| 百家乐游戏补牌规则| 澳门百家乐官网玩 | 大发游戏| 百家乐注册平台排名| 百家乐官网购怎么样| 易盈国际娱乐城| 大发888 娱乐平台| 至尊百家乐娱乐平台| 太阳百家乐官网娱乐| 百家乐官网网上投注作弊| 威尼斯人娱乐城好吗|