ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
Qin LI
Associate Researcher
liqin@sustech.edu.cn

Essential Information

Name:Qin LI

Position:Associate Researcher

Highest Degree:Doctor of Philosophy in Mathematics

Email:liqin@sustech.edu.cn

Research Field:Mathematical foundation of Quantum Field Theory


Educational Background

2001-2005, University of Science and Technology of China, B.S. in Mathematics , USTC, July 2005

2005-2011, University of California at Berkeley, Ph.D. in Mathematics, UC Berkeley, May 2011


Working Experience

2011.9-2015.7, School of Mathematical Sciences, University of Science and Technology of China, Assistant Professor

2013.6-2015.7, Department of Mathematics, The Chinese University of Hong Kong, Postdoctoral fellow

2015.7-2021.9, Department of Mathematics, Southern University of Science and Technology, Assistant Professor

2021.10- present, Institute for Quantum Sciences, Southern University of Science and Technology, Associate Researcher


Papers and Patents

(1).  “Bargmann-Fock sheaves on Ka?hler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.

(2). “Quantization of Ka?hler manifolds”,  Journal of Geometry and Physics, 163 (2021), 104143, 13 pp

(3).  “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Pro-ceedings 2018.

(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.

(5).  “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017), 575-639.

(6).  “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.

(7).  “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.

(8).  “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013

(9).  “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and  Mathematical Physics, available at arXiv:2001.10869.

(10).  “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Ka?hler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.

 


百家乐官网玩法秘决| 蓝盾百家乐官网赌场娱乐网规则 | 爱赢娱乐城开户| 网上百家乐官网真实度| 大发888代理充值| 网上百家乐是现场吗| 百家乐官网桌子北京| 百家乐平一直压庄| 电脑赌百家乐官网可靠吗| 联众棋牌游戏大厅| 投真钱百家乐必输吗| 湖南省| 老虎机派通娱乐| 丽景湾百家乐官网的玩法技巧和规则| 百家乐官网模拟投注器| 博彩交流| 娱乐城开户送| bet365备用器| 葡京娱乐场官网| 香港六合彩报| 顶级赌场官网下载| 百家乐官网有多少局| 线上百家乐怎么玩| 百家乐官网真人大头贴| 360博彩通| 威尼斯人娱乐注册| 百家乐官网技巧心| 赌博百家乐官网赢钱方法| 帝王百家乐官网全讯网2| 永发娱乐城| 澳门凯旋门娱乐城| 威尼斯人娱乐老| 百家乐翻天粤语版| 威尼斯人娱乐场 赌场网址| 大发888官方 df888 gfxzylc8| 赌博网| 百家乐扑| 曼哈顿娱乐城信誉| 百家乐官网注码方法| 百家乐官网博娱乐赌百家乐官网的玩法技巧和规则 | 齐齐哈尔市|