ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
Qin LI
Associate Researcher
liqin@sustech.edu.cn

Essential Information

Name:Qin LI

Position:Associate Researcher

Highest Degree:Doctor of Philosophy in Mathematics

Email:liqin@sustech.edu.cn

Research Field:Mathematical foundation of Quantum Field Theory


Educational Background

2001-2005, University of Science and Technology of China, B.S. in Mathematics , USTC, July 2005

2005-2011, University of California at Berkeley, Ph.D. in Mathematics, UC Berkeley, May 2011


Working Experience

2011.9-2015.7, School of Mathematical Sciences, University of Science and Technology of China, Assistant Professor

2013.6-2015.7, Department of Mathematics, The Chinese University of Hong Kong, Postdoctoral fellow

2015.7-2021.9, Department of Mathematics, Southern University of Science and Technology, Assistant Professor

2021.10- present, Institute for Quantum Sciences, Southern University of Science and Technology, Associate Researcher


Papers and Patents

(1).  “Bargmann-Fock sheaves on Ka?hler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.

(2). “Quantization of Ka?hler manifolds”,  Journal of Geometry and Physics, 163 (2021), 104143, 13 pp

(3).  “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Pro-ceedings 2018.

(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.

(5).  “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017), 575-639.

(6).  “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.

(7).  “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.

(8).  “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013

(9).  “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and  Mathematical Physics, available at arXiv:2001.10869.

(10).  “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Ka?hler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.

 


六合彩开| 百家乐博娱乐赌百家乐的玩法技巧和规则| 神州百家乐官网的玩法技巧和规则 | 百家乐桌布动物| 百家乐娱乐网网| 百家乐大西洋城v| 大发888娱乐城充值| 百家乐娱乐城注册| 瑞丰国际娱乐| 战神国际| 网上真钱娱乐城| 牌9娱乐| 百家乐官网全讯网2| 百家乐官网大小技巧| 亳州市| 百家乐官网下注技术| 百家乐官网注册平台排名| 博彩网百家乐官网全讯网| 百家乐投注网站是多少| 百家乐在线投注顺势法| 水果机规律| 新葡京娱乐城开户| 龙岩棋牌乐| 皇室国际娱乐城| 百家乐官网必知技巧| 百家乐和| 大赢家娱乐城官方网| 大赢家百家乐官网66| 百博百家乐官网的玩法技巧和规则 | 做生意的风水| 百家乐电脑赌博| 筹码百家乐的玩法技巧和规则| 百家乐网络娱乐场开户注册| bet365主页| 利都百家乐官网国际娱乐网| 百家乐注册优惠平台| 金牌百家乐的玩法技巧和规则| 视频百家乐网站| 大丰收娱乐城开户| 百家乐官网赌场游戏平台| 百家乐官网赢钱的技巧是什么|