ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
Qin LI
Associate Researcher

Essential Information

Name:Qin LI

Position:Associate Researcher

Highest Degree:Doctor of Philosophy in Mathematics

Email:[email protected]

Research Field:Mathematical foundation of Quantum Field Theory


Educational Background

2001-2005, University of Science and Technology of China, B.S. in Mathematics , USTC, July 2005

2005-2011, University of California at Berkeley, Ph.D. in Mathematics, UC Berkeley, May 2011


Working Experience

2011.9-2015.7, School of Mathematical Sciences, University of Science and Technology of China, Assistant Professor

2013.6-2015.7, Department of Mathematics, The Chinese University of Hong Kong, Postdoctoral fellow

2015.7-2021.9, Department of Mathematics, Southern University of Science and Technology, Assistant Professor

2021.10- present, Institute for Quantum Sciences, Southern University of Science and Technology, Associate Researcher


Papers and Patents

(1).  “Bargmann-Fock sheaves on Ka?hler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.

(2). “Quantization of Ka?hler manifolds”,  Journal of Geometry and Physics, 163 (2021), 104143, 13 pp

(3).  “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Pro-ceedings 2018.

(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.

(5).  “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017), 575-639.

(6).  “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.

(7).  “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.

(8).  “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013

(9).  “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and  Mathematical Physics, available at arXiv:2001.10869.

(10).  “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Ka?hler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.

 


十三张百家乐的玩法技巧和规则| 大发888官方下载 银行| 百家乐官网园首选| bet365体育在线投注 jxhymp| 大发888最新官方网址| 百家乐官网与21点| bet365娱乐场下载| 百家乐网娱乐城| 玩百家乐怎么能赢呢| 24山吉凶八卦图| 百家乐官网真人游戏网| 大发8888| 望都县| 中骏百家乐官网的玩法技巧和规则 | 百家乐凯时娱乐网| 百家乐官网单注打法| 24山安葬择日吉凶| 菲律宾百家乐官网娱乐场| 二八杠生死门| 百家乐博娱乐场开户注册| 尊龙百家乐官网赌场娱乐网规则| 百家乐官网增值公式| 百家乐的路图片| 百家乐官网平台| 百家乐官网谋略| 百家乐官网玩家技巧分享| 真人赌博网站| 丹阳棋牌游戏中心| 黄金城百家乐手机用户| 百家乐官网连锁| 百家乐官网5式直缆打法| 三易博| 百家乐pc| 澳门赌百家乐官网心法| 宁蒗| 百家乐轮盘桌| 百家乐官网娱乐送白菜| 百家乐官网的方法和公式| 百家乐官网正网包杀| 齐河县| 大发888 安装包的微博|