ag视讯打不开-AG全讯网puma

Faculty

中文       Go Back       Search
Iryna kashuba
Associate Professor

Education Experience:
Ph D in Mathematics, Universidade de S?ao Paulo, Brazil April  2000 –July 2004
MS in Mathematics, Kaiserslautern University, Germany September  1997 – March 2000
BS in Mathematics, Taras Shevchenko National September  1993 – July 1997

Work Experience:
Associate professor, Southern University of Science and Technology  2023-present
Associate professor, Universidade de S?ao Paulo  2013 - 2023
Assistant professor, Universidade de S?ao Paulo  2006 - 2013

 

Publications:
1. L. Bezerra, L. Calixto, V. Futorny, I. Kashuba, Representations of affiffiffine Lie superalgebras and their quantization in type A, Journal of Algebra 611, (2022), 320–340.
2. M. Guerrini, I. Kashuba, O. Morales, A. Oliveira, F. Santos Generalized Imaginary Verma and Wakimoto modules, Journal of Pure and Applied Algebra, 227, (2023), no. 7, 1–18.
3. Kashuba I., Mathieu O., ”O(jiān)n the free Jordan algebras”, Advances in Math., 383, (2021), 107690.
4. Borges V., Kashuba I., Sergeichuk V., Sodre E., Zaidan A., ”Classifification of Linear operators satisfying (Au, v) = (u, Arv) or (Au, Arv) = (u, v) on a vector space with indefifinite scalar product”, Linear Algebra and Appl., 611, (2021), 118-134.
5. Kashuba I., Serganova, V., ”Representations of simple Jordan superalgebra”, Advances in Math., 370, (2020), 107218.
6. Kashuba I., Futorny, V., ”Structure of parabolically induced modules for Affiffiffine Kac-Moody algebras”, Journal of Algebra, 500, (2018), 362-374.
7. Kashuba I., Martin, M. E., ”Geometric classifification of nilpotent Jordan algebras of dimension fifive”, Journal of Pure and Applied Algebra, 222 (3), (2018), 546-559.
8. Holubowski W., Kashuba I., Zurek S., ”Derivations of the Lie algebra of infifinite strictly upper triangular matrices over a commutative ring”, Comms. in Algebra, 45 (11), (2017), 4679-4685.
9. Kashuba I., Serganova, V., ”O(jiān)n the Tits-Kantor-Koecher construction of unital Jordan bimodules”, Journal of Algebra, 481, (2017), 420-463.
10. Kashuba I., Ovsienko S., Shestakov I., ”O(jiān)n representation type of Jordan basic algebras”, Algebra and Discrete Mathematics, 23 (1), (2017), 47-61.
11. Kashuba I., Martin, M. E., ”The variety of three-dimensional real Jordan algebras”, Journal of Algebra and Appl, 15 (8), (2016), 1650158.
12. Kashuba I., Zelenyuk Yu., ”The number of symmetric colorings of the dihedral group D3”, Quaestiones Mathematicae, 39(1), (2016), 65-71.
13. Kashuba I., Martin, M. E., ”Deformations of Jordan algebras of dimension four”, Journal of Algebra, 399, (2014), 277-289.
14. Kashuba I., Martin R., ”Free fifield realizations of induced modules for affiffiffine Lie algebras”, Communications in Algebra, 42 (6), (2014), 2428-2441.
15. Bekkert V., Benkart G., Futorny V., Kashuba I., ”New irreducible modules for Heisenberg and affiffiffine Lie algebras”, Journal of Algebra, 373, (2013), 284-298.
16. Hrivnak J., Kashuba I., Patera J., ”O(jiān)n E-functions of semi-simple Lie groups”, J.Physics A: Math. Gen., 44, (2011), 325205.
17. Kashuba I., Ovsienko S., Shestakov I., ”Representation type of Jordan algebras”, Advances in Math. , 226, (2011), 385-418.
18. Kashuba I., Shestakov I., ”An estimate of a dimension of a variety of alternative and Jordan algebras”, Contemporary Mathematics, 499, (2009), 165-171.
19. Futorny V., Kashuba I., ”Induced Modules for Affiffiffine Lie Algebras”, SIGMA, 5, (2009), 026.
20. Kashuba I., Patera J., ”Discrete and continuous exponential transform generalized to semisimple Lie groups of rank two”, J.Physics A: Math. Gen. 40 (2007), 4751-4774.
21. Kashuba, I. ; Shestakov, I., ”Jordan algebras of dimension three: geometric classifification and rep-resentation type”, In: XVI Coloquio Latinoamericano de ′Algebra, 2007, Colonia del Sacramento. Revista Matem′atica Iberoamericana.
22. Kashuba I., ”Variety of Jordan algebras in small dimensions”, Algebra Discrete Math., 2, (2006), 62-76.
23. Drozd Yu., Greuel G.-M., Kashuba I., ”O(jiān)n Cohen-Macaulay modules on surface singularities”, Moscow Mathematical Journal, 3 (2003), 397-418.
24. Kashuba I., Patera J., ”Graded contractions of Jordan algebras and of their representations”, J.Physics A: Math. Gen. 36 (2003), 12453-12473.
25. Futorny V., Kashuba I., ”Verma type modules for toroidal Lie algebras”, Communications in Algebra, 28 (8), (1999).


鸿运娱乐| 代理百家乐官网最多占成| 大发888 46| 万龙百家乐官网的玩法技巧和规则| 顶级赌场手机版官方| 金赞娱乐城| CEO百家乐现金网| 玉山县| 太阳城菲律宾官网| 免费百家乐官网计划软件| 林甸县| 二八杠单机游戏| 百家乐官网群html| 单机百家乐破解方法| 怎样玩百家乐官网才能| 博彩娱乐城| 大发888娱乐场官方| 澳门百家乐博客| 电子百家乐官网作假| 百家乐官网有看牌器吗| 华夏棋牌注册| 送彩金百家乐的玩法技巧和规则| 百家乐官网路单下| 百家乐官网投注网中国| 德州扑克怎么分钱| 利博百家乐的玩法技巧和规则| 至尊百家| 百家乐官网| 百家乐筹码桌布| 澳门百家乐官网网络游戏信誉怎么样 | 三易博| bet365备用 必发| 百家乐赌假的工具| 万人迷百家乐的玩法技巧和规则 | 新世纪娱乐城官方网站| 威尼斯人娱乐城最新网址| 极速百家乐真人视讯| 怎么玩百家乐能赢钱| 做生意的怎样招财| 扑克百家乐官网麻将筹码防伪| 百家乐官网机械图片|